Vietnam Academy of Science and Technology Institute of Mathematics

HYPERPLANE ARRANGEMENTS: RECENT ADVANCES AND OPEN PROBLEMS
March 11 - March 22, 2019
CIMPA-IMH reaseach school

Program book

Hanoi, 2019

HYPERPLANE ARRANGEMENTS: RECENT ADVANCES AND OPEN PROBLEMS CIMPA-IMH reaseach school

The theory of hyperplane arrangements is a very active area of research. In the recent years there has been huge progress in the understanding of this subject. Some specific main problems are

1. Are the monodromy operators or at least the Betti numbers $b_{m}(F)$ of the Milnor fiber F of a hyperplane arrangement \mathcal{A} are combinatorially determined?
2. Are the jump loci of the cohomology of the complement of \mathcal{A} with coefficients in rank one local systems determined by the intersection lattice $L(\mathcal{A})$?
3. Can there be torsion in the first homology group?
4. Terao's Conjecture: Is the freeness of an arrangement combinatorially determined?
5. Matroids and Kazhdan-Lusztig polynomials: Are the coefficients of the KazhdanLusztig polynomials associated to non-realizable matroids always non-negative?

The aim of this CIMPA school is to introduce this fascinating area of mathematics to researchers from Viet Nam and neighboring countries in Asia. The above problems are among various aspects of Hyperplane Arrangements will be introduced at this CIMPA school through 6 carefully selected courses. The school is primarily oriented towards PhD students and young researchers working in the area of Algebra, Geometry and Topology.

The school is followed by a 2 days workshop, where most recent progresses in the field will be presented by experts from all over the world. The schools participants are also encouraged to participate in the workshop. They can take this opportunity to exchange ideas with experts, as well as to approach some concrete and open problems which can be the subject of their research in the future.

Organizers

The scientific coordinators of the school:

- Alexandru Dimca, University Noice Sophia Antipolis, Nice, France
- Nguyen Viet Dung, Institute of Mathematics, VAST, Hanoi, Vietnam

The scientific committee of the school:

- Alexandru Suciu, Northeastern University, Boston, USA - Chair
- Anca Daniela Macinic, Institute of Mathematics, Romanian Academy, Bucharest, Romania
- Ngô Viêt Trung, Institute of Mathematics, VAST, Hanoi, Vietnam

The local organizers are:

- Nguyen Viet Dung, Institute of Mathematics, VAST, Viet Nam
- Vu The Khoi, Institute of Mathematics, VAST, Viet Nam
- Nguyen Bich Van, Institute of Mathematics, VAST, Viet Nam

Sponsor

1. Centre International de Mathématiques Pures et Appliquées (CIMPA)
2. Commission for Developing Countries - International Mathematical Union (CDCIMU)
3. Institute of Mathematics, Hanoi (IMH)
4. Vietnam Academy of Science and Technology (VAST)
5. International Centre for Research and Post graduate Training in Mathematics under the auspices of UNESCO (ICRTM)

SCHOOL PROGRAM

Monday, March 11, 2019

Morning

08:30-08:45	Registration
$08: 45-09: 00$	Opening Ceremony
$09: 00-10: 50$	Daniel Cohen (Louisiana State University, USA) On arrangement groups and associated invariants 1 and 2
10:50-11:10	Coffee break
11:10-12:00	Graham Denham (University of Western Ontario, Canada) Arrangements, wonderful models and toric varieties Lecture 1
12:00-14:00	Lunch
Afternoon	

14:00-14:50 Clément Dupont (University of Montpellier, France)
On the monodromy of Milnor fibers of hyperplane arrangements Lecture 1

14:50-15:10 Coffee break
15:10-16:00 Clément Dupont (University of Montpellier, France) On the monodromy of Milnor fibers of hyperplane arrangements. Lecture 2

16:00-16:45 Tutorial session

Tuesday, March 12, 2019

Morning
09:00-09:50 Graham Denham (University of Western Ontario, Canada) Arrangements, wonderful models and toric varieties Lecture 2
10:00-10:50 Max Wakefield (United States Naval Academy, USA)
Matroids, arrangements, and representation theory. Lecture 1
10:50-11:10 Coffee break
11:10-12:00 Max Wakefield (United States Naval Academy, USA)
Matroids, arrangements, and representation theory. Lecture 2
12:10-14:00 Lunch
Afternoon
14:00-14:50 Clément Dupont (University of Montpellier, France)
On the monodromy of Milnor fibers of hyperplane arrangements.
Lecture 3
14:50-15:10 Coffee break
15:10-16:00 Graham Denham (University of Western Ontario, Canada)
Arrangements, wonderful models and toric varieties
Lecture 3
16:00-16:45 Tutorial session

Wednesday, March 13, 2019

Morning

$$
\begin{array}{ll}
\text { 09:00-10:50 } & \begin{array}{l}
\text { Daniel Cohen(Louisiana State University, USA) } \\
\text { On arrangement groups and associated invariants } \\
\text { Lecture 3 and } 4
\end{array} \\
10: 50-11: 10 & \text { Coffee break } \\
11: 10-12: 00 & \text { Graham Denham (University of Western Ontario, Canada) } \\
& \begin{array}{l}
\text { Arrangements, wonderful models and toric varieties } \\
\text { Lecture 4 }
\end{array}
\end{array}
$$

12:00-14:00 Lunch

Afternoon
14:00-14:50 Graham Denham (University of Western Ontario, Canada) Arrangements, wonderful models and toric varieties Lecture 5

14:50-15:10 Coffee break
15:10-16:00 Max Wakefield (United States Naval Academy, USA)
Matroids, arrangements, and representation theory. Lecture 3
16:00-16:45 Christin Bibby (University of Michigan, USA)
Torics Arrangements. Lecture 1

Thursday, March 14, 2019

Morning
09:00-09:50 Max Wakefield (United States Naval Academy, USA)Matroids, arrangements, and representation theory. Lecture 410:00-10:50 Clément Dupont (University of Montpellier, France)On the monodromy of Milnor fibers of hyperplane arrangements.
Lecture 4
10:50-11:10 Coffee break11:10-12:00 Clément Dupont (University of Montpellier, France)On the monodromy of Milnor fibers of hyperplane arrangements.Lecture 5
12:10-14:00 Lunch
Afternoon
14:00-14:50 Christin Bibby (University of Michigan, USA)Torics Arrangements. Lecture 2
14:50-15:10 Coffee break
15:10-16:00 Christin Bibby (University of Michigan, USA)Torics Arrangements. Lecture 3
16:00-16:45 Tutorial session

Friday, March 15, 2019

Morning

09:00-10:50	Clément Dupont (University of Montpellier, France) On the monodromy of Milnor fibers of hyperplane arrangements. 10:50-11:10 Lecture 6 and 7
11:10-12:00	Coffee break
	Daniel Cohen(Louisiana State University, USA) On arrangement groups and associated invariants Lecture 5
12:00-14:00	Lunch
Afternoon	
$14: 00-14: 50$	Daniel Cohen(Louisiana State University, USA) On arrangement groups and associated invariants
	Lecture 6

Saturday and Sunday, March 16-17, 2019

Ha Long Bay Tour

Monday, March 18, 2019

Morning

```
09:00-09:50 Masahiko Yoshinaga (Hokkaido University)
    On free hyperplane arrangements and Terao's conjecture.
    Lecture 1
10:00-10:50 Christin Bibby (University of Michigan, USA)
    Torics Arrangements. Lecture 4
10:50-11:10 Coffee break
11:10-12:00 Christin Bibby (University of Michigan, USA)
    Torics Arrangements. Lecture 5
12:10-14:00 Lunch
Afternoon
14:00-14:50 Graham Denham (University of Western Ontario, Canada)
    Arrangements, wonderful models and toric varieties
    Lecture 6
14:50-15:10 Coffee break
15:10-16:00 Graham Denham (University of Western Ontario, Canada)
    Arrangements, wonderful models and toric varieties
    Lecture 7
```

18:30-20:30 School Party

Tuesday, March 19, 2019

Morning
09:00-10:50 Masahiko Yoshinaga (Hokkaido University)
On free hyperplane arrangements and Teraos conjecture. Lecture 2 and 3

10:50-11:10 Coffee break
11:10-12:00 Max Wakefield (United States Naval Academy, USA)
Matroids, arrangements, and representation theory. Lecture 6

12:00-14:00 Lunch
Afternoon
14:00-14:50 Masahiko Yoshinaga (Hokkaido University)
On free hyperplane arrangements and Teraos conjecture. Lecture 4

14:50-15:10 Coffee break
15:10-16:00 Christin Bibby (University of Michigan, USA)
Torics Arrangements. Lecture 6
16:00-16:45 Tutorial session

Wednesday, March 20, 2019

Morning

09:00-09:50 Christin Bibby (University of Michigan, USA)Torics Arrangements. Lecture 710:00-10:50 Masahiko Yoshinaga (Hokkaido University)On free hyperplane arrangements and Teraos conjecture.
Lecture 5
10:50-11:10 Coffee break
11:10-12:00 Masahiko Yoshinaga (Hokkaido University)
On free hyperplane arrangements and Teraos conjecture.
Lecture 6
12:10-14:00 Lunch
Afternoon
14:00-14:50 Daniel Cohen(Louisiana State University, USA)
On arrangement groups and associated invariants
Lecture 7
14:50-15:10 Coffee break
15:10-16:00 Max Wakefield (United States Naval Academy, USA)
Matroids, arrangements, and representation theory. Lecture 7
16:00-16:45 Masahiko Yoshinaga (Hokkaido University)
On free hyperplane arrangements and Teraos conjecture.
Lecture 7

ABSTRACT OF COURSES

Course 1: On the monodromy of Milnor fibers of hyperplane arrangements

Clémemt Dupont
Department of Mathematics,
University of Montpellier
Montpellier, France
Abstract: This is an introductory course, related to the monodromy operators and Milnor fiber of an arrangement. The Milnor fiber F and the monodromy operators $h^{m}: H^{m}(F ; \mathbb{C}) \longrightarrow H^{m}(F ; \mathbb{C})$ will be carefully defined, and the main examples discussed in detail. Several approaches for the computation of the Betti numbers $b_{i}(F)$ and of the eigenvalues of the monodromy operators hm will be discussed as well.

Course 2: Arrangements, wonderful models and toric varieties Graham Denham
Department of Mathematics, University of Western Ontario
Ontario, Canada

Abstract: This is an introductory course centred around some geometric aspects of complex hyperplane arrangements. By viewing the complement $M(\mathcal{A})$ as a subvariety of a complex torus in a toric variety, we see a number of interesting spaces constructed from a hyperplane arrangement, such as De Concini-Procesi's wonderful compactification. The course will give a working introduction to the combinatorics of matroids and of toric varieties, leading to the notion of the Bergman fan and a tropical linear space. We will consider some modern applications.

Course 3: On free hyperplane arrangements and Terao's conjecture

 Masahiko YoshinagaDepartment of Mathematics, Hokkaido University

Sapporo, Japan
Abstract: This is an introductory course related to the Terao's conjecture. The notion of a free singularity and of a free hypersurface will be introduced, and a special attention will be given to the analogies and differences between the local analytic case and the global graded algebraic case. The case of line arrangements in \mathbb{P}^{2} will be discussed in detail, in particular the cases of no more than 13 lines, when the conjecture is known to hold.

Course 4: On arrangement groups and associated invariants

Daniel Cohen
Department of Mathematics, Louisiana State University

Louisiana, USA
Abstract: This is an inductory course discussing "arrangement groups", fundamental groups of complements of complex hyperplane arrangements, various invariants of these groups, and the interplay among them.

Course 5: Matroids, arrangements, and representation theory
Max Wakefield
Department of Mathematics, United States Naval Academy
Annapolis, USA

Abstract: This is an introductory course, centered on two aspects, and related to problem of Kazhdan-Lusztig polynomials. First, the combinatorial natural of most of the questions in this theory, which is best formalized by using the matroids. Then, the fact that many important classes of hyperplane arrangements come from complex reflection groups acting on a vector space. Indeed, the hyperplanes of the arrangements are just the reflecting hyperplanes of the group action. A discussion of the Braid Arrangement, of the Monomial Arrangement and of the Full Monomial Arrangement will illustrate this aspect.

Course 6: Toric arrangements
Christin Bibby
Department of Mathematics, University of Michigan
Ann Arbor, USA

Abstract: This is an advanced course in which instead of looking at hyperplanes in an affine space \mathbb{C}^{n} or in a projective space \mathbb{P}^{n}, ones looks at affine subtori in an algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$ or at abelian subvarieties (say subtori in an abelian variety A, say an algebraic compact torus). Many results from the case of hyperplane arrangements extend to these new situations, but sometimes new techniques and new ideas are involved.

WORKSHOP PROGRAM

Thursday, March 21, 2019

Morning

10:00-10:50	Alexandru Dimca (University of Nice Sophia Antipolis) Tensor decomposition and hyperplane arrangements
11:10-12:00	Takahiro Nagaoka (Kyoto University)
	Hypertoric varieties and hyperplane arrangements
12:00-14:00	Lunch
Afternoon	

14:00-14:50 Tatsuya Horiguchi (Osaka University) A basis of the cohomology ring of a regular nilpotent Hessenberg variety

15:10-16:00 Tran Nhat Tan (Hokkaido University)
A combinatorial description of the exponents of A_{1}^{2} restrictions of Weyl arrangements

Friday, March 22, 2019

Morning

10:00-10:50	Takuro Abe (Kyushu University)
	Combinatorics of the addition-deletion theorems for
	free arrangements

11:10-12:00 Norihiro Nakashima (Nagoya Institute of Technology) Coboundary polynomials of Coxeter arrangements and Catalan arrangements
12:00-14:00 Lunch
Afternoon
14:00-14:50 Masahiko Yoshinaga (Hokkaido University)
Double coverings of arrangement complements and 2-torsion in Milnor fiber homology

15:10-16:00 Alex Suciu (Northeastern University)
Arrangement groups, lower central series, and Massey products

WORKSHOP ABSTRACT

Tensor decomposition and hyperplane arrangements
Alexandru Dimca
Laboratoire J.-A. Dieudonné, Université de Nice- Sophia Antipolis

Nice, France
Abstract: In this talk we give information on symmetric tensors in n variables of Waring rank $n+1$.

Hypertoric varieties and hyperplane arrangements

Takahiro Nagaoka
Kyoto University,
Kyoto, Japan

Abstract: Hypertoric varieties are algebraic varieties, defined as an analogue of toric varieties. As the geometric properties of (projective) toric varieties can be studied by the associated polytopes, hypertoric varieties can be studied by its associated hyperplane arrangements. In this talk, I will introduce hypertoric varieties with examples and pictures. Then, I will discuss the classification of singularities of affine hypertoric varieties and counting its good resolutions in terms of associated hyperplane arrangements.

A basis of the cohomology ring of a regular nilpotent Hessenberg variety
Tatsuya Horiguchi
Osaka University,
Osaka, Japan

Abstract: Hessenberg varieties are subvarieties of a full flag variety. This subject lies at the intersection of, and makes connections between, many research areas such as algebraic geometry and topology, representation theory, and combinatorics. In particular, the cohomology ring of a regular nilpotent Hessenberg variety can be described by the logarithmic derivation module of the ideal arrangement. In this talk, I would like to explain a basis of the cohomology ring of a regular nilpotent Hessenberg variety in terms of the root system in type A. This is joint work with Makoto Enokizono, Takahiro Nagaoka, Akiyoshi Tsuchiya.

A combinatorial description of the exponents of A_{1}^{2} restrictions of Weyl arrangements
Tan Nhat Tran
Hokkaido University
Sapporo, Japan

Abstract: Let \mathcal{A} be a Weyl arrangement in an ℓ-dimensional Euclidean space. Using a case-by-case argument, Orlik-Terao (1993) proved that any restriction of \mathcal{A} is free. Prior to this, Orlik-Solomon (1983) had completely determined the exponents of these arrangements by exhaustion. However, describing theoretically their exponents is still a difficult task. A classical result, due to Orlik-Solomon-Terao (1986), asserts that the exponents of any A_{1} restriction i.e., the restriction of \mathcal{A} to a hyperplane, are given by $\left\{m_{1}, \ldots, m_{\ell-1}\right\}$, where $\exp (\mathcal{A})=\left\{m_{1}, \ldots, m_{\ell}\right\}$ with $m_{1} \leq \ldots \leq m_{\ell}$. As a next step after Orlik-Solomon-Terao towards understanding the exponents of restrictions, we are especially doing the investigation on the A_{1}^{2} restrictions i.e., the restrictions of \mathcal{A} to subspaces X of the type A_{1}^{2}. In this talk, we will present a description of the exponents of such restrictions in terms of the classical notion of related roots by Kostant (1955). This is a joint work with Takuro Abe and Hiroaki Terao.

Takuro Abe: Combinatorics of the addition-deletion theorems for free arrangements

Takuro Abe
Institute of Mathematics for Industry
Kyushu University
Kyushu, Japan

Abstract

The most useful result to check/prove the freeness of arrangements is Terao's addition-deletion theorem. We show that this is combinatorial. Namely, if you are given an arrangement and its addition/deletion, then whether they are free or not depends only on the intersection lattice. Based on them, we introduce two classes of free arrangements called the divisionally and additionally free arrangements in which Terao's conjecture is true.

Coboundary polynomials of Coxeter arrangements and Catalan arrangements
Norihiro Nakashima
Nagoya Institute of Technology
Nagoya, Japan

Abstract: The Tutte polynomial gives us many interesting information of graphs and hyperplane arrangements. In particular the characteristic polynomial can be computed by this polynomial. Crapo introduced the coboundary polynomial for a matroid, which is essentially equivalent to the Tutte polynomial. Also the Hamming weight enumerator for the matroid of an error correcting code is transformed from the coboundary polynomial. In this talk I present a computation of coboundary polynomials for the matroids of Coxeter arrangements and Catalan arrangements. This is join work with S. Tsujie.

Double coverings of arrangement complements and 2-torsion in Milnor fiber homology
Masahiko Yoshinaga
Hokkaido university, Sapporo, Japan

Abstract: We prove that mod 2 Betti numbers of double coverings of arrangement complements are combinatorially determined. Applying this result to the icosidodecahedral arrangement (which is an arrangement of 16 planes in \mathbb{R}^{3} related to the icosidodecahedron) we conclude that the first homology group of its Milnor fiber has 2-torsion.

Arrangement groups, lower central series, and Massey products Alex Suciu Northeastern University, Boston, USA

Abstract: I will discuss some recent advances in our understanding of fundamental groups of complements of complex hyperplane arrangements, with emphasis on associated graded and holonomy Lie algebras, as well as Massey products in positive characteristic. The talk will be based on current joint work with Rick Porter.

LIST OF PARTICIPANTS

Hassan Abdalgader
Faculty of Mathematical Sciences
University of Khartoum,
AlGamma avenue
Khartoum, Sudan
gdoorash@gmail.com

Takuro Abe
Institute of Mathematics
for Industry
Kyushu University
Kyushu, Japan
abe@imi.kyushu-u.ac.jp

Nestor Acala

Mindanao State University
Marawi City, Lanao del Sur
Philippines, 9007
nestor.acala@gmail.com

Abdalla Amna
Pure Mathematics Department, Faculty of Mathematical Sciences, University of Khartoum, Khartoum, Sudan. amnamohsin1995@gmail.com

Ta Thi Hoai An
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
tthan@math.ac.vn

Tran Tu Anh

Department of Mathematics, University of Sciences, VNU HoChiMinh city, Vietnam
anhtu2791993@gmail.com

Vu Tuan Anh

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
vtanh@math.ac.vn

Adnan Aslam

University of Engineering
and Technology
Lahore, Pakistan
adnanaslam15@yahoo.com

Dao Phuong Bac
Department of Mathematics -
Mechanics - Informatics
Hanoi University of Sciences, VNU
334 Nguyen Trai, Hanoi, Vietnam
dpbac.vnu@gmail.com

Aqsa Bashir

Abdus Salam school of
Mathematical sciences
GCUniversity
68-B, New Muslim Town
Lahore, Pakistan 54600
aqsabashir961@gmail.com

Christin Bibby

Department of Mathematics
University of Michigan
Ann Arbor, Michigan, USA
bibby@umich.edu

Nguyen Van Chau

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
nvchau@math.ac.vn

Daniel Cohen

Department of Mathematics
Louisiana State University
Baton Rouge, Louisiana, USA cohen@math.lsu.edu

Nguyen The Cuong

Department of Mathematics
Mechanics - Informatics
Hanoi University of Sciences, VNU
334 Nguyen Trai, Hanoi, Vietnam
tdntcuong@gmail.com

Doan Trung Cuong
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
dtcuong@math.ac.vn

Nguyen Tu Cuong
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
ntcuong@math.ac.vn

Graham Denham

Department of Mathematics
Middlesex College
University of Western Ontario
London, ON Canada N6A 5B7
gdenham@uwo.ca

Alexandru Dimca

Laboratoire J.-A. Dieudonné
Université de Nice- Sophia Antipolis Parc Valrose, 06108 Nice, Cedex 02
France
dimca@unice.fr

Le Ba Dung

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
dungkael@gmail.com

Hoang Phi Dung

Posts and Telecommunications
Institute of Technology
122 Hoang Quoc Viet Road
Hanoi, Vietnam
dunghp@ptit.edu.vn

Nguyen Viet Dung
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
vietdung@math.ac.vn

Clément Dupont

Department of Mathematics
University of Montpellier
Montepellier, France
clement.dupont@umontpellier.fr

Phung Ho Hai

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
phung@math.ac.vn

Nguyen Thu Hang

Department of Natural Sciences
Thai Nguyen University
Thai Nguyen, Vietnam
nguyenthuhang0508@gmail.com

Pham Hoang Hiep

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
phhiep@math.ac.vn

Phan Dinh Hieu

Department of Mathematics, University of Sciences, VNU HoChiMinh city, Vietnam
phandinhhieu.mga@gmail.com

Le Tuan Hoa

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
lthoa@math.ac.vn

Nguyen Dang Khai Hoan
Department of Mathematics, University of Sciences, VNU HoChiMinh city, Vietnam
khaihoan@gmail.com

Do Trong Hoang

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
dthoang@math.ac.vn

Tatsuya Horiguchi

Department of Pure and Applied Mathematics, Graduate School of Information
Science and Technology
Osaka University, Osaka, Japan
tatsuya.horiguchi0103@gmail.com

Anwar Imran

Abdus Salam school of
Mathematical sciences
GCUniversity
68-B, New Muslim Town
Lahore, Pakistan 54600
iimrananwar@gmail.com

Vu The Khoi

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
vtkhoi@math.ac.vn

Tran Nguyen Khanh Linh

College of education
Hue University
Hue, Vietnam
tnkhanhlinh141@gmail.com

Ta Le Loi

Department of Mathematics -
Informatics
Da Lat University
1 Phu Dong Thien Vuong, Da Lat
Lam Dong, Vietnam
loitl@du.edu.vn

Romdhini Mamika Ujianita

Mathematics Department,
Faculty of Mathematics and
Natural Science,
Mataram University,
Mataram, Indonesia
mamika_ur@yahoo.com

Meach Mon

Department of Mathematics
Heng Somrin Tboungkhmum University
Cambodia
meach_mon@yahoo.com

Khadam Muhamad Azeem

Abdus Salam school of
Mathematical sciences
GCUniversity
68-B, New Muslim Town
Lahore, Pakistan 54600
azeemkhadam@gmail.com

Husnar Muzzafar COMSATS University
Islamabad, Lahore, Pakistan
husna415@gmail.com

Norihiro Nakashima

Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 Japan nakashima@nitech.ac.jp

Bui Nguyen Thao Nguyen

 Department of Mathematics InformaticsDa Lat Unversity
1 Phu Dong Thien Vuong, Dalat
Lamdong, Vietnam
nguyenbnt@dlu.edu.vn

Le Chieu Hoang Nguyen

Department of Mathematics, University of Sciences, VNU HoChiMinh city, Vietnam sunyata121@gmail.com

Nguyen Van Ninh

Department of Mathematics
Thai Nguyen University of Education Thai Nguyen, Vietnam
nguyenninhsp@gmail.com

Stéphanie Nivoche

Laboratoire J.-A. Dieudonné
Université de Nice- Sophia Antipolis
Parc Valrose, 06108 Nice, Cedex 02
France
stephanie.nivoche@unice.fr

Nguyen Vu Trung Quan

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
quan_dl_1995@yahoo.com.vn

Pham Minh Quy

Department of Mathematics -
Informatics, Da Lat University
1 Phu Dong Thien Vuong, Dalat
Lamdong, Vietnam
p.minhquydl@gmail.com

Le Thi Ngoc Quynh Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
ltnquynh@math.ac.vn

Abdi Roghayeh

Azarbaijan Shahid Madani University
Kilometers 35, Tabriz/Maragheh Road
P.O.Box : 53714-161

Tabriz, Iran
rabdi@azaruniv.ac.ir

Ashraf Samia

University of Sargodha
Gujranwala Campus, Gujranwala 52250, Pakistan
samia.ashraf@yahoo.com

Ahmad Sarfraz
COMSAT Institute of
Information Techonology
Lahore, Pakistan
sarfrazahmad@ciitlahore.edu.pk

Takashi Sato

Advanced Mathematical
Institute,
Osaka City University,
Osaka, Japan
t-sato@sci.osaka-cu.ac.jp

Pashei Seyed Zeynal

Department of Mathematics
Ferdowsi University of Mashhad
Mashhad, Vakilabad Highway, 9177948974, Iran.
pashaei.seyyedzeynal@mail.um.ac.ir

Nazir Shaheen

Lahore University of
Management Sciences
Lahore, Pakistan
shaheen.nazeer@gmail.com

Pham Tien Son

Department of Mathematics -
Informatics, Da Lat University
1 Phu Dong Thien Vuong, Dalat
Lamdong, Vietnam
sonpt@dlu.edu.vn

Alexandru Suciu

Deptartment of Mathematics
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
a.suciu@neu.edu

Pho Duc Tai

Department of Mathematics
Mechanics - Informatics
Hanoi University of Sciences, VNU
334 Nguyen Trai, Hanoi, Vietnam
phoductai@yahoo.com

Nagaoka Takahiro

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
tnagaoka@math.kyoto-u.ac.jp

Nguyen Duy Tan

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
duytan@math.ac.vn

Tran Nhat Tan

Department of Mathematics
Hokkaido University
North 10, West 8, Kita-ku, Sapporo, 060-0810, JAPAN
trannhattan157@gmail.com

Tran Van Tan

Department of Mathematics
Hanoi National University
of Education
136 Xuan Thuy, Cau Giay
Hanoi, Vietnam

Do Duc Thai

Department of Mathematics
Hanoi National University
of Education
136 Xuan Thuy, Cau Giay
Hanoi, Vietnam
ddthai@netnam.org.vn

Nguyen Quoc Thang

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
nqthang@math.ac.vn

Nguyen Tat Thang

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
ntthang@math.ac.vn

Quan Thi Hoai Thu
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
hoaithu9210@gmail.com

Ninh Van Thu

Department of Mathematics -
Mechanics - Informatics
Hanoi University of Sciences, VNU
334 Nguyen Trai, Hanoi, Vietnam
Dinh Si Tiep
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
dstiep@math.ac.vn

Tran Nam Trung
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
tntrung@math.ac.vn

Ngo Viet Trung

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
nvtrung@math.ac.vn

Nguyen Bich Van

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
nbvan@math.ac.vn

Pham Anh Vinh
Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
phamanhvinh96@gmail.com

Nguyen Chu Gia Vuong

Institute of Mathematics, VAST
18 Hoang Quoc Viet Road
10307 Hanoi, Vietnam
ncgvuong@math.ac.vn

Max Wakefield

Department of Mathematics
U.S. Naval Academy

121 Blake Road,
Annapolis, MD 21402, USA
wakefiel@usna.edu

Guo Weilli

Department of Mathematics
Hokkaido University
North 10, West 8, Kita-ku, Sapporo, 060-0810, JAPAN
guoweili2016@gmail.com

Masahiko Yoshinaga

Department of Mathematics
Hokkaido University
North 10, West 8, Kita-ku,
Sapporo, 060-0810, JAPAN
yoshinaga@math.sci.hokudai-u.ac.jp

Siti Zahidah

Departemen Matematika
Fakultas Sains dan Teknologi
Universitas Airlangga,
Kampus C Jl. Mulyorejo Surabaya
(60115) Universitas Airlangga

Surabaya, Indonesia
siti.zahidah@fst.unair.ac.id

