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Abstract

The full comprehension and handling of the phenomenon of shattering, sometime happening

during the process of polymer chain degradation [29, 32], remains unsolved when using the tra-

ditional evolution equations describing the degradation. This traditional model has been proved

to be very hard to handle as it involves evolution of two intertwined quantities. moreover, the

explicit form of its solution is, in general, impossible to obtain. In this article, we explore the

possibility of generalizing evolution equation modeling the polymer chain degradation and ana-

lyze the model with β derivative. We consider the general case where the breakup rate depends

on the size of the chain breaking up. In the process, the alternative version of Sumudu integral

transform is used to provide an explicit form of the general solution representing the evolution

of polymer sizes distribution. In particular, we show that this evolution exhibits existence of

complex periodic properties due to the presence of cosine and sine functions governing the so-

lutions. Numerical simulations are performed for some particular cases and proves that such a

system describing the polymer chain degradation contains complex and simple harmonic poles

whose effects are given by these functions or a combination of them. This result may be crucial

in the ongoing research to better handle and explain the phenomenon of shattering.

Keywords: β- derivative; depolymerization; replicated fractional poles; simple and complex

harmonic motion; shattering

1 Introduction, motivation and Justification

Depolymerization is the process where polymers or biopolymers are converted into

monomers or mixtures of monomers. Polymers range from familiar synthetic plastics

such as polystyrene (also called styrofoam) to natural biopolymers such as DNA and pro-

teins that are fundamental to biological structure and function. Historically, products

arising from the linkage of repeating units by covalent chemical bonds have been the

primary focus of polymer science; emerging important areas of the science now focus on

non-covalent links. Polyisoprene of latex rubber and the polystyrene of styrofoam are

examples of polymeric natural/biological and synthetic polymers, respectively. In biolog-

ical contexts, essentially all biological macromolecules, i.e. proteins (polyamides), nucleic
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acids (polynucleotides), and polysaccharides are purely polymeric, composed in large part

of polymeric components, for instance, isoprenylated/lipid-modified glycoproteins, where

small lipidic molecule and oligosaccharide modifications occur on the polyamide backbone

of the protein.

Today, it is widely known that the Newtonian concept of derivative can no longer

satisfy all the complexity of the natural occurrences. A couple of complex phenomena

and features happening in some areas of sciences or engineering are still (partially) un-

explained by the traditional existing methods and remain open problems. Usually in

mathematical modeling of a natural phenomenon that changes, the evolution is described

by a family of time-parameter operators, that map an initial given state of the system to

all subsequent states that takes the system during the evolution. A widely devotion has

been predominantly offered to way of looking at that evolution in which time’s change

is described as transitions from one state to another. Hence, this is how the theory of

semigroups was developed [16, 25], providing the mathematicians with very interesting

tools to investigate and analyze resulting mathematical models. However, most of the

phenomena scientists try to analyze and describe mathematically are complex and very

hard to handle. Some of them like depolymerization, the rock fractures and fragmentation

processes are difficult to analyze [11, 33] and often involve evolution of two intertwined

quantities: the number of particles and the distribution of mass among the particles in the

ensemble [15, 20, 28]. Then, though linear, they display non-linear features such as phase

transition (called “shattering”) causing the appearance of a “dust” of “zero-size” particles

with nonzero mass. The phenomena of “shattering” remain (partially) unexplained by

traditional models.

Another example is the groundwater flowing within a leaky aquifer. Recall that an

aquifer is an underground layer of water-bearing permeable rock or unconsolidated mate-

rials (gravel, sand, or silt) from which groundwater can be extracted using a water well.

Then, how do we explain accurately the observed movement of water within the leaky

aquifer? As an attempt to answer this question, Hantush [17, 18] proposed an equation

with the same name and his model has since been used by many hydro-geologists around

the world. However, it is necessary to note that the model does not take into account

all the non-usual details surrounding the movement of water through a leaky geological

formation. Indeed, due to the deformation of some aquifers, the Hantush equation is not

able to account for the effect of the changes in the mathematical formulation. Hence, all

those non-usual features are beyond the usual models’ resolutions and need other tech-

niques and methods of modeling with more parameters involved.

Furthermore, time’s evolution and changes occurring in some systems do not happen

on the same manner after a fixed or constant interval of time and do not follow the same

routine as one would expect. For instance, a huge variation can occur in a fraction of

second causing a major change that may affect the whole system’s state forever. Indeed,

it has turned out recently that many phenomena in different fields, including sciences, en-
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gineering and technology can be described very successfully by the models using fractional

order differential equations [4, 6, 9, 10, 13, 14, 19, 22, 27]. Hence, differential equations

with fractional derivative have become a useful tool for describing nonlinear phenomena

that are involved in many branches of chemistry, engineering, biology, ecology and numer-

ous domains of applied sciences. Many mathematical models, including those in acoustic

dissipation, mathematical epidemiology, continuous time random walk, biomedical engi-

neering, fractional signal and image processing, control theory, Levy statistics, fractional

phase-locked loops, fractional Brownian, porous media, fractional filters motion and non-

local phenomena have proved to provide a better description of the phenomenon under

investigation than models with the conventional integer-order derivative [6, 22, 26].

One of the attempts to enhance mathematical models was to introduce the concept

of derivative with fractional order. There exist in the literature number of definitions of

fractional derivatives, including Riemann–Liouville and Caputo derivatives respectively

defined as

Dα
x (f(x)) =

1

Γ(n−α)

(
d

dx

)n∫ x

0

(x− t)n−α−1f (t)dt, (1)

n−1<α≤n and

Dα
x (f(x)) =

1

Γ(n−α)

∫ x

0

(x− t)n−α−1

(
d

dt

)n

f (t)dt, (2)

n−1<α≤n. A new fractional derivative with no singular kernel was recently proposed

by Caputo et al. in [7]. However, Caputo fractional derivative [8], for instance, is the

one mostly used for modelling real world problems in the field [4, 6, 13–15, 20, 28].

However, this derivative exhibits some limitations like not obeying the traditional chain

rule; which chain rule represents one of the key elements of the match asymptotic method

[20, 28]. Recall that the match asymptotic method has never been used to solve any

kind of fractional differential equations because of the nature and properties of fractional

derivatives. Hence, the conformable fractional derivative was proposed [2, 21]. This

fractional derivative is theoretically very easier to handle and obeys the chain rule. But

it also exhibits a huge failure that is expressed by the fact that the fractional derivative

of any differentiable function at the point zero is zero. This does not make any sense in a

physical point of view and then, a modified new version, the β–derivative was proposed

in order to skirt the noticed weakness. The main aim of this new derivative was, first

of all, to extend the well-known match asymptotic method to the scope of the fractional

differential equation and later to describe the boundary layers problems within the folder

of fractional calculus. The β–derivative was defined as [1, 15, 20]:

A
0 D

β
t g(t) =





lim
ε→0

g
(

t+ε(t+ 1

Γ(β))
1−β

)

−g(t)

ε
for all t≥ 0, 0<β≤ 1

g(t) for all t≥ 0, β=0,

(3)
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where g is a function such that g : [0, ∞)→R and Γ the gamma-function

Γ(ζ) =

∫ ∞

0

tζ−1e−tdt.

If the above limit of exists then g is said to be β−differentiable.

Note that for β=1, we have A
0 D

β
t g(t) =

d
dt
g(t). Moreover, unlike other derivatives with

fractional parameters, the β–derivative of a function can be locally defined at a certain

point, the same way like the first order derivative. For a general order, let us say mβ, the

mβ–derivative of g is defined as

A
0 D

mβ
t g(t) =A

0 Dβ
t

(
A
0 D

(m−1)β
t g(t)

)
for all t≥ 0, m∈N, 0<β≤ 1 (4)

Notice that themβ–derivative of a given function provides information about the previous

n−1–derivatives of the same function. For instance we have

A
0 D

2β
t g(t)=A

0 Dβ
t

(
A
0 D

β
t g(t)

)

=

(
t+

1

Γ(β)

)1−β
[
(1−β)

(
t+

1

Γ(β)

)−β

g′+

(
t+

1

Γ(β)

)1−β

g′′

]
.

(5)

This gives the β–derivative a unique property of memory, that is not provided by any

other derivative. It is also easy to verify that for β =1, we recover the second derivative

of g. For more properties and details on this new derivative, the readers can consult the

reference [1, 15, 20, 28].

1.1 The kinetic equation

The evolution of the sizes distribution occurring during polymer chain degradation is

well known [12, 15, 32] to be described by the following integrodifferential equation

∂

∂t
g(x,t) =−g(x,t)

∫ x

0

H(y,x−y)dy+2

∞∫

x

g(y, t)H(x,y−x)dy, x, t > 0. (6)

Expressing the solution of equation (6) in its explicit form is very hard since fragmentation

(or polymer chain degradation) processes, as explained in the previous section, are difficult

to analyse as they involve evolution of two intertwined quantities: the distribution of

mass among the particles in the ensemble and the number of particles in it. That is why,

though linear, they display non-linear features such as “shattering” phenomena which

they cannot fully explain [11, 15, 33]. Then, in order to have a broader idea about the

evolution of polymer chain degradation and maybe trying to understand the phenomenon

of shattering as described here above, we explore the possibility of extending the analysis

by considering the β–derivative defined in the previous section. This yields the following

integrodifferential equation:
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A
0 D

β
t g(x,t) =−g(x,t)

∫ x

0

Hβ(y,x−y)dy+2

∞∫

x

g(y, t)Hβ(x,y−x)dy, x, t > 0. (7)

subject to the initial condition

g(x,0)= g
0
(x), x> 0 (8)

where g(x,t) represents the density of x-groups (i.e. groups of size x) at time t andHβ(x,y)

gives the average fragmentation rate, that is, the average number at which clusters of size

x+y undergo splitting to form an x-group and a y-group.

2 Some useful properties in the β−differentiation

Recall that there is a growing problem about the choice of the type of fractional

derivative to use among the large number of its existing versions. We already men-

tioned the incapacity of most of them to explicitly provide the variation of the functions.

Moreover, many models using fractional derivatives are not easy to handle analytically.

The β–derivative allows us to palliate some insufficiencies of other fractional derivatives

and then, we were able to successfully extend the well-known match asymptotic method

[20, 28] to the scope of the fractional differential equation and also describe the boundary

layers problems within the scope of fractional calculus. Next we recall some properties of

the β–derivative all proved in [15, 20, 28].

Theorem 2.1. Assuming that, a given function, say g : [a, ∞)→R is β−differentiable

at a given point, say t0≥ a, β ∈ (0, 1], then g is also continuous at t0.

Theorem 2.2. Assuming that f is β−differentiable on an open interval (a, b) then

1. If A
0 D

β

t f(t)< 0 for all t∈ (a, b) then f is decreasing on (a,b);

2. If A
0 D

β

t f(t)> 0 for all t∈ (a, b) then f is increasing on (a,b);

3. If A
0 D

β

t f(t) = 0 for all t∈ (a, b) then f is constant on (a,b).

Theorem 2.3. Assuming that, g 6= 0 and f are two β−differentiable functions with β ∈
(0,1] then the following relations are satisfied

1. A
0 D

β

t (af (t)+bg(t))= aA0 D
β

t (f (t))+bA0 D
β

t (g (t)) for all real numbers a and b;

2. A
0 D

β

t (c)= 0 for any given constant c;

3. A
0 D

β

t (f (t)g(t))= g (t)A0 D
β

t (f (t))+f (t)A0 D
β

t (g (t)) ;

4. A
0 D

β

t

(
f(t)
g(t)

)
=

g(t)A
0
D

β

t
(f(t))−f(t)A

0
D

β

t
(g(t))

g2(t)
.
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Theorem 2.4. Let f : [a, ∞) → R be a function such that f is differentiable and also

β−differentiable. Let g be a function defined in the range of f and also differentiable,

then we have the following rule

A
0 D

β

t (gof(t))=

(
t+

1

Γ(β)

)1−β

f ′(t)g′ (f(t)) (9)

Definition 2.1. Let f : [a, ∞) → R be a given function, then we propose that the β−
integral of f is

A
a I

β

t (f(t)) =

∫ t

a

(
ξ+

1

Γ(β)

)β−1

f(ξ)dξ (10)

The above operator is the inverse operator of the proposed fractional derivative. We

shall present to underpin this statement by the following theorem.

Theorem 2.5. A
0 D

β
t

[
A
0 I

β

t f(t)
]
= f (t) for all t ≥ 0 with f a given continuous and

differentiable function.

Proof. [1, Theorem 7]

Theorem 2.6.
A
a I

β

t

[
Dβ

t f(t)
]
= f (t)−f(a) (11)

for all t ≥ a with f a given continuous and differentiable function.

Proof. [1, Theorem 8]

3 Solutions to the model

Note that these above models (6) and (7) are well applicable in many branches of

natural sciences, including physics, chemistry, engineering, biology, ecology, just to name

a few, and in numerous domains of applied sciences, such as the rock fractures and break

of droplets. Various types of fragmentation equations have been comprehensively an-

alyzed in numerous works (see, e.g., [12, 30, 33]). In the domain of polymer science,

the fragmentation dynamics has also been of considerable interest, since degradation of

bonds or depolymerisation results in fragmentation, see [5, 23, 32]. In [23], the authors

used statistical arguments to find and analyze the size distribution of the model. The

authors in [5] analysed the model in combination with the inverse process, that is, the

coagulation process, and provided a similar result for the size distribution. However, the

classical fragmentation model (6) has been proved to be unable to fully describe some

bizarre phenomena observed in such a degradation process, like for instance shattering

as described above and also in [11, 23, 32, 33]. Recall that shattering is a phenomenon

seen as an explosive or dishonest Markov process, see e.g. [3, 24] and has been associated

with an infinite cascade of breakup events creating a ‘dust’ of particles of zero size which,

however, carry non-zero mass. Hence, to have explicit solutions to the model, we consider
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the case where the breakup rate depends on the size of the chain breaking and takes the

form

Hβ(x,y) = (x+y)ν, ν ∈R (12)

Substituting in equation (7) yields

Dβ
t (g(x,t)) =−xν+1g(x,t)+2

∞∫

x

yνg(y, t)dy, 0≤ β≤ 1 (13)

Taking the the modified Sumudu transform Sβ (see the Appendix below) of both sides of

equation (13) yields

Sβ

(
Dβ

t g(x,t), r
)
=−xν+1Gβ

s (x,r)+2

∞∫

x

yνGβ
s (y,r)dy,

where Gβ
s (x,r) represents the the modified Sumudu transform Sβ(g(x,t), r) of g(x,t).

Using the relation (23) of Appendix, we obtain

r−2(Gβ
s (x,r)−g

0
(x)) =−xν+1Gβ

s (x,r)+2

∞∫

x

yνGβ
s (y,r)dy,

rearranged to have

(
1+xν+1r2

)
Gβ

s (x,r)−2r2
∞∫

x

yνGβ
s (y,r)dy= g

0
(x). (14)

Next, it is important to mention that considering the differential equation (13), it is

implicitly required that the function ξ −→ g(ξ, t) is integrable, in the sense of Lebesgue,

on any interval [ε,∞) for ε > 0 and almost every ξ > 0. Obviously, the same assertion

applies to the functions ξ−→ g
0
(ξ) and ξ−→Gβ

s (ξ,r), 0≤ β≤ 1.

This allows us to put

Z(x,r) =−2r2
∞∫

x

yνGβ
s (y,r)dy (15)

knowing that the integrand will be integrable over any interval [ε,∞) and the integral will

be absolutely continuous at each x > 0. The substitution of Z(x,r) into (14) yields the

partial differential equation
(
1+xν+1r2

1+r2xν

)
∂xZ(x,r)+Z(x,r) = g

0
(x). (16)

Choosing the constant in the general solution so as to have solutions converging to zero

at ∞, we obtain its solution given as

Z(x,r) = 2r2e−σr,ν(x)

∞∫

x

ξνg
0
(ξ)

1+r2ξν+1
eσr,ν(ξ)dξ
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where

σr,ν(x) =

x∫

0

2r2ξν

1+r2ξν+1
dξ= ln

(
1+r2xν+1

) 2
ν+1

. (17)

Thus, substituting Z(x,r) into (15) yields the solution of (14) given as

Gβ
s (x,r) =

−1

xν

(
2r2xν

1+r2xν+1
e−σr,ν(x)

) x∫

∞

ξνg
0
(ξ)

1+r2ξν+1
eσr,ν(ξ)dξ+

g
0
(x)

1+r2xν+1

=
g
0
(x)

1+r2xν+1
− 2r2

(1+r2xν+1)
2

ν+1
+1

x∫

∞

ξν
(
1+r2ξν+1

) 2
ν+1

−1

g
0
(ξ)dξ

(18)

Applying the inverse of the modified Sumudu transform, which coincides with the inverse

Sumudu transform, we are finally lead to the solution of the model (13), given by

g(x,t)=S−1
β (Gβ

s (x,r), t)

= g
0
(x)S−1

β

(
1

1+r2xν+1
, t

)
−2

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

= g
0
(x)cos(t

√
xν+1)−2

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

(19)

Remark 3.1. The expression g(x,t) in (19) is well-defined only if the integral

x∫

∞

ξνg
0
(ξ)S−1

β


r2 (1+r2ξν+1)

2
ν+1

−1

(1+r2xν+1)
2

ν+1
+1

, t


dξ

converges.

We are now capable of taking some specific values of ν to see the exact expression of

the solution.

• For ν =1, expression (19) becomes

g(x,t)= g
0
(x)S−1

β

(
1

1+r2x2
, t

)
−2

x∫

∞

ξg
0
(ξ)S−1

β

(
r2

(1+r2x2)
2
, t

)
dξ

= g
0
(x)cosxt− tsinxt

x

x∫

∞

ξg
0
(ξ)dξ

(20)
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• For ν =−3, expression (19) becomes

g(x,t) = g
0
(x)S−1

β

(
1

1+r2x−2
, t

)
−2

x∫

∞

ξg
0
(ξ)S−1

β

(
r2
(
1+r2ξ−2

)−2
, t
)
dξ

= g
0
(x)cos

t

x
−2

x∫

∞

ξg
0
(ξ)

ξtsin t
ξ

2
dξ

= g
0
(x)cos

t

x
−

x∫

∞

tξ2g
0
(ξ)sin

t

ξ
dξ

(21)

0.5
1

1.5
2

2.5
3

0

5

10

15
−40

−30

−20

−10

0

10

20

30

40

x

g
1
(x,t) when g

0
(x) = 1/x3
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g 1(x
,t)

Fig. 1. g(x, t) when ν=1 and g
0
(x) =1/x3

4 Concluding remarks

We have explored the possibility of using new and alternative methods to generalize

evolution equation modeling the polymer chain degradation. In the process, a modified

version of the Sumudu transform is exploited to perform analysis of the system endowed

the β−derivative and where the breakup rate depends on the size of the chain breaking

up. Explicit forms of the solutions in some particular cases showed that the dynamics of

this evolution exhibits complex periodic properties due to the presence of cosine and sine

functions, as shown in Figs. 1 to 6, plotted for a positive value (ν = 1) and a negative

value (ν = −3) of ν. Figs. 1 to 3 represent the solution for ν = 1 with initial condition

g
0
(x) = 1/x3 : Fig.1 is the 2−D surface plot while Fig. 2 and 3 are respectively its cross
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section and longitudinal section drawn for some specific values of the size x and time t. A

similar reasoning applies to Figs. 4 to 6, but this time with ν =−3. This infers existence

of complex and simple harmonic poles in the dynamics of polymer chain degradation

whose effects are characterized by these functions or a combination of them. This work

improved the preceding one with the inclusion of a more general expression of the breakup

rate derivative and β−derivative. This work might be a breakthrough that may lead to
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a better understanding of bizarre phenomena happening in some dynamics such as the

phenomenon of shattering.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 25, NO.8, 2018, COPYRIGHT 2018 EUDOXUS PRESS, LLC

1500 Doungmo Goufo et al 1490-1503



0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

g
2
(x) when g

0
(x) = 1/x3

x

g 2(x
)

 

 

t = 0

t = π
t = 2π
t = 3π
t = 4π
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Appendix: The new Sumudu integral transform

Definition: Let g be a function defined in (0,∞), then, we define the modified Sumudu

transform of g as

Sβ(g(t),u) =

∫ ∞

0

(
t+

1

Γ(β)

)β−dβe
1

u
e−

t
u g(t)dt, (22)

where dβe is the smallest integer greater or equal to β. Since β ∈ (0,1] in this article then,

β−dβe= β−1.

An important property of the modified Sumudu transform:

If S(g(t),u) is the well known Sumudu transform of g defined in [31] as

S(g(t),u) =

∫ ∞

0

1

u
exp

[
− t

u

]
g(t)dt,

then, we have the following relation:

Sβ(
A
0 D

β
t g

n−1(t),u) =
1

un
S(g(t),u)−

n−1∑

k=0

1

un−k
g(k)(0) (23)
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Proof. By definition we have

Sβ(
A
0 D

β
t g

n−1(t),u) =

∫ ∞

0

(
t+

1

Γ(β)

)β−1

1

u
exp

[
− t

u

]


(
t+

1

Γ(β)

)β−1

lim
ε→0

gn−1

(
t+ε

(
t+ 1

Γ(β)

)1−β
)
−gn−1(t)

ε


dt

=

∫ ∞

0

(
t+

1

Γ(β)

)β−1
1

u
exp

[
− t

u

] ((
t+

1

Γ(β)

)1−β

lim
η→0

gn−1 (t+η)−gn−1(t)

η

)
dt

(24)

where we have put η = ε
(
t+ 1

Γ(β)

)1−β

−→ 0 as ε −→ 0. Hence, making use of the well

known property of Sumudu transform S(g(t),u) [31], we obtain

Sβ(
A
0 D

β
t g

n−1(t),u) =S(gn(t),u) =
1

un
S(g(t),u)−

n−1∑

k=0

1

un−k
g(k)(0),

which concludes the proof.
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