ODEs
 Exam 2 (50 points)

Instructions: Show all of your work. No credit will be awarded for an answer without the necessary work.

1. (9 points) Solve the initial value problem $t^{2} x^{\prime \prime}+t x^{\prime}-x=0, x(0)=1, x^{\prime}(0)=0$.
2. (9 points) Solve the initial value problem $x^{\prime \prime}+3 x^{\prime}+2 x=4 t, x(0)=-2, x^{\prime}(0)=1$.
3. (9 points) Find the general solution of $u^{\prime}=A u+f(t)$, where

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], f(t)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

4. (9 points) Find a formula for the solution of the IVP $x^{\prime \prime}+x=f(t), x(0)=x^{\prime}(0)=0$ and identify the Green's function.
5. (9 points) Apply the power series method to solve the ODE $x^{\prime \prime}+3 t x^{\prime}+3 x=0$. Use a power series centered at $t=0$. (Find one solution for full credit; if you find two linearly independent solutions, you will receive extra credit.)
6. (5 points) Here is a theorem stated in class: Suppose the power series

$$
f(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}
$$

has a positive radius of convergence. Then f is differentiable on the interior of its interval of convergence and

$$
f^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n}\left(t-t_{0}\right)^{n-1}
$$

Moreover, the power series for f^{\prime} has the same radius of convergence as does the power series for f. You may assume this theorem to be true.
(a) Suppose f is defined by $f(x)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}$ and that the series has a positive radius of convergence. Prove that

$$
a_{n}=\frac{f^{(n)}\left(t_{0}\right)}{n!}, n=0,1,2, \ldots
$$

(b) Suppose $\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}$ is a power series with a positive radius of convergence, and suppose that $\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}=0$ for all t in the interval of convergence. Prove that $a_{n}=0$ for all $n=0,1,2, \ldots$.

