# WEPS Peer and Automatic Assessment in Online Calculus Course

Matti Pauna
University of Helsinki
Department of Mathematics and Statistics

myweps.com



## myweps.com

You are not logged in. (Login)

English (en)



#### Ordering and the Completeness of Real Numbers

This lecture introduces the properties of the operations of real numbers (addition, subtraction, multiplication, and division). Ordering of numbers and the **Completeness** of the set of real numbers are discussed.



The following workshops requires students to write a proof, and then to assess other students' submissions



### Online Calculus I

#### Each module contains

- YouTube videos
- Written materials
- Quizzes (Automatic assessment)
  - Workshops (Peer assessment)
- Discussion forum, calendar, gradebook



youtube.googleapis.com/v/K-CBJRBtMYQ#Introduction%20to%20Derivatives

Introduction to Derivatives
by Mika Seppälä

# TANGENTS OF GRAPHS OF FUNCTIONS

Theory and worked out
examples explained in
YouTube videos
- Viewable also with mobile
devices



Differentiation/Introduction/Tangents and the Derivative by M. Seppälä



## **Automatic Assessment**

Students work with problems online, enter answers, get immediate meaningful feedback and monitor their progress

Solve for t

$$\frac{t}{2} + \frac{t}{5} = 4.$$

Answer:  $t = \frac{40}{7}$ 

Your last answer was interpreted as follows:

 $\frac{40}{7}$ 

Online practice with computer-generated feedback

#### Check

Correct answer, well done.

Multiply both sides of the equation

$$\frac{t}{2} + \frac{t}{5} = 4$$

by the least common multiple of the denominators, which is  $2 \cdot 5 = 10$ , to obtain

$$2 \cdot 5 \cdot \frac{t}{2} + 2 \cdot 5 \cdot \frac{t}{5} = 2 \cdot 5 \cdot 4 \iff 5t + 2t = 40 \iff 7t = 40$$

Divide both sides by 7 to obtain the solution  $t = \frac{40}{7}$ .

Using the method of integration by substitution, find the following integral:

Run the question tests...

$$\int \frac{\sin(4x)}{\cos(4x) + 3} \, dx.$$

 $-\log(\cos(4x)+3)/4$ 

Your last answer was interpreted as follows:  $-\log(\cos(4x)+3)/4$ 

This answer is invalid.

You seem to be missing \* characters. Perhaps you meant to type  $-\log(\cos(4*x)+3)/4$ .

Using the method of integration by substitution, find the following integral:

$$\int \frac{\sin(4x)}{\cos(4x) + 3} \, dx.$$

-log(cos(4\*x)+3)/4

Your last answer was interpreted as follows:

$$\frac{-\ln(\cos(4x)+3)}{4}$$

STACK assists with the correct input of formulas

## **Automatic Assessment**

- Diagnostic test helps students and instructors to know where students stand in the beginning of the course
- 2. Continuous learning by practicing and getting constructive **feedback**

Implemented with STACK, created by Chris Sangwin, Loughborough University, UK

## Peer assessment

Students submit homework online, then grade and give feedback to others' work

## Peer assessment

### Workshop module in Moodle:

- 1. Students are given homework problems that are to be submitted by Wednesday
- 2. After the submission deadline, an example solution is provided
- 3. According to the model solution and assessment criteria, students have to grade and give constructive feedback to five randomly selected students by Sunday
- 4. Student's own grade from this assignment is the average of the five grades
- 5. Teacher's role is to monitor and support

## Pedagogical goals:

- Students have to study the model solution and the solutions of five other students that way learning from common mistakes and trying to give corrective feedback
- Creating interaction between students in an online course
- Scalable to MOOCs

# Problem given in peer assignment

## Complex Limit Problem

In this workshop you need to compute the limit

$$\lim_{x\to\infty} \frac{\sin^2(\sqrt{x+1}-\sqrt{x})}{1-\cos^2\frac{1}{x}}.$$

Show all the steps of the computation.

## A student's solution

The given equation is rather cumbersome, so let's begin by making it a little bit easier to read. Let's name the functions of x in the the numerator as t = (sqrt(x+1)-sqrt(x)) and the functions of x in the denominator as u = 1 / x. Then the original equation looks like this:

$$\lim_{x \to \infty} f(x) = \sin^2(t) / (1 - \cos^2(u)).$$

Since by Pythagorean trigonometric identity  $sin^2(x) + cos^2(x) = 1$  we may change the denominator to be

1 - cos^2 (u) = sin^2 (u), so the original equation ends up looking like this:

$$\lim_{x \to \infty} f(x) = \sin^2(t) / \sin^2(u).$$

Let's look at the right part of the equation and not worry about limits just yet:

$$\sin^2(t) / \sin^2(u) \rightarrow (\sin(t) / \sin(u))^2 \rightarrow ((\sin(t) * t / t) / (\sin(u) * u / u))^2 \rightarrow (\sin(t) / \sin(u) + (\sin(u) / \sin(u))^2 \rightarrow (\sin(t) / \sin(u))^2 \rightarrow (\sin(u) / \cos(u))^2 \rightarrow (\sin(u) / \cos(u$$

 $((\sin(t) / t) * t) / ((\sin(u) / u) * u))^2.$ 

## Another student's feedback

#### Assessment form

#### Aspect 1

Has the observation  $\lim_{x\to 0} \sqrt{x} + 1 - \sqrt{x} = 0$  been made and justified by the rewriting

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1})^2 - (\sqrt{x})^2}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \to 0 \text{ as } x \to \infty$$
?

Grade 12/15

Comment The calculations are overwhelmed with extra brackets and there are few excessive steps there (after recieving 1 /(sqrt(x+1)+sqrt(x))) but anyway the observation was made and justified.

In this problem, assessment is broken down into three aspects, each with maximum points and instruction to grade

# Lessons learned from workshops

- Give very clear instructions, e.g. students should write down what they are doing for others to see what is going on
- Problems should be easy enough for all to get started
- Encourage everybody to submit even if thinking that the solution is not complete
- Assessment criteria to be designed carefully and explained to students
- Make clear that student's role is not to act as a grader, rather to help others to learn

## **WEPS**

- Grants from NSF SAVI-program (Science Across Virtual Institutes) and Academy of Finland
- Develop learning analytics and motivational methods in MOOCs
- myweps.com offers these materials freely for teaching and learning under creative commons license

SEARCH



Ψ O

**FUNDING** 

AWARDS

DISCOVERIES

NEWS

PUBLICATIONS

STATISTICS

ABOUT NSF

**FASTLANE** 

# News

#### News

**News From the Field** 

For the News Media

**Special Reports** 

**Research Overviews** 

**NSF-Wide Investments** 

**Speeches & Lectures** 

**NSF Current Newsletter** 

**Multimedia Gallery** 

**News Archive** 

#### **News by Research Area**

**Arctic & Antarctic** 

Astronomy & Space

Press Release 13-031

## International Team Targets Innovations in STEM Learning

U.S-Finnish collaboration through Science Across Virtual Institutes (SAVI) brings the strengths of each country to bear on improving science, technology, engineering and mathematics education in K-16 classrooms







International partners meet at an opening meeting at Stanford University in January, 2013.

Credit and Larger Version



Life-like avatars serve as cognitive tutors in a game to help students comprehend science texts.

Credit and Larger

# Advancing an Online Project in the Assessment and Effective Teaching of Calculus

George Mason University, University of Helsinki, Florida State University, Texas A&M University

Researchers from the U.S. and Finland are conducting ground-breaking analyses on a massive open online course (MOOC) on calculus that is based at the University of Helsinki: the World Education Portals (WEPS). MOOCs represent a potentially revolutionary development in the design of teaching and learning environments. This project involves several universities in the US and Finland; it is convening a variety of experts on learning, assessment, cognitive diagnostic modeling, and research methodology to: (1) advance the learning of calculus, and (2) recommend best practices on the design, deployment and analysis of this, and other, MOOCs.

## NSF and Academy of Finland funded SAVI Project



Anthony E. Kelly George Mason U



Eric Hamilton Pepperdine U



Harry Kroto Nobel Laureate (Chemistry) FSU



Hannele Niemi U of Helsinki



Mika Seppälä U of Helsinki and FSU

Calculus I, log paths



A log path is a subgraph in the graph of activities of the network of students recorded by the logs.

If the log contains consecutive time-stamped records for the same userid, accessing online resources R1 then R2, the edge <R1,R1> appears in the activity network.

It is labeled by the activity name.

