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Fractions and percentages as tools to 
compare situations 
 
Activity 1 
The students will be asked to solve the following problem: 
 

 

Start of a lesson plan 
The teacher introduces the problem and makes sure that the students understand the 
situation and understand what is asked. 

A prediction of student responses 
Reasoning with absolute numbers: students may say, for example, that Bram is the 
best, because he has the most black dots. 
Referring to proportions: students may say that it is the proportion of the black dots 
that matter. For example: 'Bram scores 24 times, but he has tried more often than 
others', or: 'Ernst has scored 20 out of 50, but Julia 10 out of 20.' 

Yesterday some children practiced shooting the basketball. 
Below you see how often they scored. 
A black dot means the child did score, an open dot means 
the child missed. 
1. Which child has scored best? 

2. Can you put all children in order? 



Actions of the teacher 
The teacher stimulates a discussion about proportional reasoning. In a basketball 
game counts how many times someone might score when there is a chance. In other 
situations a reasoning in absolute terms might be more appropriate. 
If all students immediately interpret the situation in proportional terms, the teacher 
may ask a question like: 'In another group a student said that Bram was the best, 
because he has scored 24 times, what do you think about that?' 
 
 

Activity 2 
Three performances will take place in the school theater. How busy will the theater 
be during each performance? Color the part of the hall that is occupied and write 
down the percentage of the seats that is occupied. 
 

 

 

 

 

 

 

 

 

 

 

 

 

seats stage a. A pop concert 

stage b. An historical play 

stage c. A fashion show 

seats 

seats 



Background Basketball activity 
The emphasis in this lesson should not be on the calculations, but on the 
fact that in this situation a proportional comparison is appropriate - not a 
comparison in absolute numbers - and on the mathematical tools we 
have for such a comparison: ratio's, fractions and percentages. 
The first question - who has scored best - can be answered by remarking 
that Tess is the only one with more than a half of her trials in. The 
ordering of all children asks for more extensive calculations. 
The score of Ernst - 20 out of 50 - offers an easy step to percentages. 
 
Background Theatre activity 
This is an example of an explorative activity to support students in 
building models (i.e. the bar model) based upon their prior ideas and 
experiences. With a system of tasks, including open inquiry activities as 
well as more closed practicing activities, students are guided to reinvent 
the mathematics of percentages. The bar model initially emerges as a 
model of specific situations and turns into a (thought)model for reasoning 
about percentages and connecting them with fractions. 
 
Reference 
Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in Realistic 
Mathematics Education: An example from a longitudinal trajectory on percentage. 
Educational Studies in Mathematics 54(1), 9-35. 



 
 

1. A rope of 30 meter is divided in 5 short and 3 long 
parts. A short and a long part together are 9 meter. 
How long is a short part? 

 
 
 
 
 
 
 
 
 
2. Use the applet GeomAlg1D to explore situations. 

Change the length of the x-arrow.  
When do the two arrow-stacks have the same height? 
 

 

 
 



3. Example activities after the step towards GeomAlg2D: 
 



4. Student answers to rope problems offering starting 
points for constructing and reasoning with algebraic 
expressions 

 
 
 



 
Operating with expressions 

 
 

1. Complete the above Algebra Tree 
 

2. Create a similar task for your colleagues or students 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Kindt, 2004) 



You can count on it 
 

 
 

3. Check the calculations on the blackboard and add 
some lines. Which formula reflects the regularity in 
this sequence of calculations? How can you prove the 
formula?  
 

4. Design a similar sequence of calculations (with the 
same result on each line), set up a corresponding 
formula and prove it. 
 

 
 
 

(Kindt, 2004) 



Productive Practice 
Practice is essential to anchor skills acquired through 
insight. For most students, the effect of practice will 
improve to the extent that the exercises require more 
thought, elicit more independent contributions from the 
students and offer more possibilities for reflection. In 
short, the effect of practice will improve to the extent that 
the exercises have a more productive character. […] 
Here are ten recommendations that have been explicitly 
or implicitly addressed in these examples.  
 

1. Ask reverse questions to promote mental agility. 
2. Vary the practice formats and activities as much as 

possible. 
3. Challenge the students to reason logically (for 

example, by using coherent strings of problems). 
4. Challenge the students to generalize (for example by 

means of number patterns).  
5. Practice  the  substitution  of  ‘formulas  in  formulas’  

(formal substitution). 
6. Practice the elimination of variables in systems of 

formulas or equations. 
7. Pay attention to the verbal reading and writing of 

algebra rules or formulas.  
8. Challenge  the  students  to  create  their  ‘own  

productions’. 
9. Also practice algebra in geometry. 

 
and more generally  
 
10. Where possible, maintain and strengthen previously 

acquired computational and algebraic skills. 
 
(Kindt, 2010, p. 175-176) 
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Home Repairs 

Jim is a contractor specializing in small household repairs 
that require less than a day to complete. For most jobs, 
he uses a team of three people. For each one of the three 
people, Jim charges the customer $25 in travel expenses 
and $37 per hour. Jim usually uses a calculator to 
calculate the bills. He uses a standard form for each bill. 
 

 
 
1. Show the charge for each plumbing repair job. 

a. Replacing pipes for Mr. Ashton: 3 hours 
b. Cleaning out the pipes at Rodriguez and Partners: 

21–2 hours 
c. Replacing faucets at the Vander house: 3–4 hour 

 
People often call Jim to ask for a price estimate for a 
particular job. Because Jim is experienced, he can 
estimate how long a job will take. He then uses the table 
to estimate the cost of the job. 
 
Hours  Labor Cost  

(in dollars) 
Travel Cost 
(in dollars) 

Cost per 
Worker 
(in dollars) 

Total for Three 
Workers 
(in dollars) 

1 37 25 62 186 
2 74 25 99 297 
3 111 25 136 408 
4 148 25 173 519 
     
5     



2.   
a. What do the entries in the first row of the table 

represent? 
b. Add the next row for five hours to the table. 

 
3.  

a. Explain the regularity in the column for the labor 
cost per worker. 

b. Study the table. Make a list of all of the regularities 
you can find. Explain the regularities. 
 

4.   
a. Draw an arrow string that Jim could use to make 

more rows for the table. 
b. Use your arrow string to make two more rows (for 

6 and7 hours) on the table. 
 
 
The calculations within this task can be structured in a 
way that prepares for dealing with functions:

 



 
Thirsty in the desert 
Below you see part of a map of a desert. There are five 
wells in this area. Imagine you and your herd of sheep are 
standing at J. You are very thirsty and you only brought 
this map with you.  
 

1. To which well would you go for water? 
2. Colour the region of positions that all have well 2 as 

the closest place to find water. 
 

 
 

 
Provinces in the Netherlands 
On the next page you see a redivision of the Netherlands 
in provinces, based on the positions of their capitals.  
 

3. How are the province borders created? How could 
you find them by folding the map? 

4. What property holds for the  ‘three-countries-point’  of 
the cities of Middelburg, Den Haag and Den Bosch? 



 
 
Other province capitals 
 

  
 

5. For each of the two above windows, find the province 
borders in case the points represent the capitals. 

6. Find an arrangement of points that leads to a 
‘special’  arrangement  of  ‘province  borders’. 
 
 (adapted from Goddijn, Kindt, & Reuter, 2004) 



Voronoi diagrams 
Voronoi-diagrams are named after the mathematician 
Voronoi. He (in 1908) and Dirichlet (in 1850) used these 
diagrams in a pure mathematical problem, the 
investigation of positive definite square forms. In 1911, 
Thiessen used the same sort of diagrams while 
determining quantities of precipitation in an area, while 
only measuring at a small number of points. In 
meteorology, geography and archaeology the term 
Thiessen-polytope instead of Voronoi-cell became 
established. 
(Goddijn, Kindt, & Reuter, 2004, p. I-9) 
 
Reference  
Goddijn, A., Kindt, M., & Reuter, W. (2004). Geometry 
with applications and proofs. Utrecht: Freudenthal 
Institute. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 
 



 

 

 
 
A doctor presents the following details about the use of a specific drug: 
  •   An average of 25% of the drug leaves your body by secretion during a 

day. 
  •   The drug is effective after a certain level is reached.  

Therefor it takes a few days before the drug that you take every day is 
effective.  

  •   Do not skip a day. 
  •   It can be unwise to compensate a day when you forgot the drug with a 

double dose in the next day. 
 
N.B. These details are a simplification of reality. 
 
 
Activity 1: Investigation 
 
  •   Use calculations to investigate how the level of the drug changes 

when a person starts taking in the drug with a daily dose of 1500 mg 
with for instance three times 500 mg.  

  •   Are the consequences of skipping a day and/or of taking a double 
dose really so dramatic? 

  •   Can each drug level be reached? Explain your answer. 
 

Design a flyer for patients with answers on the above questions. Include 
graphs and/or tables to illustrate the progress of the drug level during 
several days. 
 
 

  



 

 

Activity 2: Reflection with dynamic models 
 
After the introduction of difference equations (Xn = aXn-1 + b) students 
are confronted with their previous results. 
 
You investigated last year the progress of a drug level during several 
days. 
The illustrations below show some solutions. As you can see, with 
similar information you reached quite different results. 
Explain the differences by using formulas for the underlying calculations.  
 
 

Solution 1 



 

 

Solution 2 
 



 

 

Solution 3 
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What is Realistic Mathematics Education? 
Realistic Mathematics Education – hereafter abbreviated as RME – is a domain-specific 
instruction theory for mathematics, which has been developed in the Netherlands. 
Characteristic of RME is that rich, ‘realistic’ situations are given a prominent position in the 
learning process. These situations serve as a source for initiating the development of 
mathematical concepts, tools and procedures and as a context in which students can in a later 
stage apply their mathematical knowledge, which then gradually has become more formal and 
general, and less context-specific. 

Although ‘realistic’  situations  in  the  meaning  of  ‘real-world’  situations  are important in RME, 
‘realistic’  has a broader connotation here. It means students are offered problem situations 
which they can imagine. This  interpretation  of  ‘realistic’  traces  back  to  the Dutch expression 
‘zich  REALISEren’, meaning ‘to  imagine’.  It is this emphasis on making something real in 
your mind that gave RME its name. Therefore, in RME, problems presented to students can 
come from the real world, but also from the fantasy world of fairy tales, or the formal world 
of mathematics, as long as the problems are  experientially  real  in  the  student’s  mind. 
 

The onset of RME 
The initial start of RME was the founding in 1968 of the Wiskobas  (‘mathematics  in primary 
school’)  project initiated by Edu Wijdeveld and Fred Goffree, and joined not long after by 
Adri Treffers. In fact, these three mathematics didacticians created the basis for RME. In 
1971, when the Wiskobas project became part of the newly-established IOWO Institute, with 
Hans Freudenthal as its first director, and in 1973 when the IOWO was expanded with the 
Wiskivon project for secondary mathematics education, this basis received a decisive impulse 
to reform the prevailing approach to mathematics education. 

In the 1960s, mathematics education in the Netherlands was dominated by a mechanistic 
teaching approach; mathematics was taught directly at a formal level, in an atomized manner, 
and the mathematical content was derived from the structure of mathematics as a scientific 
discipline. Students learned procedures step-by-step with the teacher demonstrating how to 
solve problems. This led to inflexible and reproduction-based knowledge. As an alternative 
for this mechanistic approach, the ‘New  Math’ movement deemed to flood the Netherlands. 
Although Freudenthal was a strong proponent of the modernization of mathematics education, 
it was his  merit that Dutch mathematics education was not affected by the formal approach of 
the New Math movement and that RME could be developed. 
 
                                           
1 Van den Heuvel-Panhuizen, M., & Drijvers, P. (in press). Realistic Mathematics Education. In S. Lerman 
(Ed.), Encyclopedia of Mathematics Education (pp. xxx-xxx). Dordrecht, Heidelberg, New York, London: 
Springer. 
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Freudenthal’s  guiding ideas about mathematics and mathematics education 
Hans Freudenthal (1905-1990) was a mathematician born in Germany who in 1946 became a 
professor of pure and applied mathematics and the foundations of mathematics at Utrecht 
University in the Netherlands. As a mathematician he made substantial contributions to the 
domains of geometry and topology. 

Later in his career, Freudenthal (1973, 1991) became interested in mathematics education and 
argued for teaching mathematics that is relevant for students and carrying out thought 
experiments to investigate how students can be offered opportunities for guided re-invention 
of mathematics. 

In addition to empirical sources such as textbooks, discussions with teachers and observations 
of children, Freudenthal (1983) introduced the method of the didactical phenomenology. By 
describing mathematical concepts, structures, and ideas in their relation to the phenomena for 
which they were created, while taking into account students’  learning process, he came to 
theoretical reflections on the constitution of mental mathematical objects, and contributed in 
this way to the development of the RME theory. 

Freudenthal (1973) characterized the then dominant approach to mathematics education in 
which scientifically structured curricula were used and students were confronted with ready-
made mathematics as an ‘anti-didactic  inversion’. Instead, rather than being receivers of 
ready-made mathematics, students should be active participants in the educational process, 
developing mathematical tools and insights by themselves. Freudenthal considered 
mathematics as a human activity. Therefore, according to him, mathematics should not be 
learned as a closed system, but rather as an activity of mathematizing reality and if possible 
even that of mathematizing mathematics. 

Later,  Freudenthal  (1991)  took  over  Treffers’  (1987)  distinction  of horizontal and vertical 
mathematization. In horizontal mathematization, the students use mathematical tools to 
organize and solve problems situated in real-life situations. It involves going from the world 
of life into that of symbols. Vertical mathematization refers to the process of reorganization 
within the mathematical system resulting in shortcuts by using connections between concepts 
and strategies. It concerns moving within the abstract world of symbols. The two forms of 
mathematization are closely related and are considered of equal value.  Just  stressing  RME’s  
‘real-world’ perspective too much may lead to neglecting vertical mathematization. 
 

The core teaching principles of RME 
RME is undeniable a product of its time and cannot be isolated from the worldwide reform 
movement in mathematics education that occurred in the last decades. Therefore, RME has 
much in common with current approaches to mathematics education in other countries. 
Nevertheless, RME involves a number of core principles for teaching mathematics which are 
inalienable connected to RME. Most of these core teaching principles were articulated 
originally by Treffers (1978), but were reformulated over the years, including by Treffers 
himself. 

In total six principles can be distinguished. 
 The activity principle means that in RME students are treated as active participants in the 

learning process. It also emphasizes that mathematics is best learned by doing 
mathematics, which is strongly reflected in Freudenthal’s  interpretation of mathematics as 
a human activity, as well as in Freudenthal’s  and  Treffers’ idea of mathematization. 
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 The reality principle can be recognized in RME in two ways. First, it expresses the 
importance that is attached to the goal of mathematics education including students’ ability 
to apply mathematics in  solving  ‘real-life’  problems.  Second, it means that mathematics 
education should start from problem situations that are meaningful to students, which 
offers them opportunities to attach meaning to the mathematical constructs they develop 
while solving problems. Rather than beginning with teaching abstractions or definitions to 
be applied later, in RME, teaching starts with problems in rich contexts that require 
mathematical organization or, in other words, can be mathematized and put students on the 
track of informal context-related solution strategies as a first step in the learning process. 

 The level principle underlines that learning mathematics means students pass various 
levels of understanding: from informal context-related solutions, through creating various 
levels of shortcuts and schematizations, to acquiring insight into how concepts and 
strategies are related. Models are important for bridging the gap between the informal, 
context-related mathematics and the more formal mathematics. To fulfill this bridging 
function, models have to shift – what Streefland (1993) called – from a  ‘model  of’  a  
particular  situation  to  a  ‘model  for’  all  kinds  of  other,  but  equivalent,  situations. 

Particularly for teaching operating with numbers, this level principle is reflected in the 
didactical method of ‘progressive schematization’ as it was suggested by Treffers and in 
which transparent whole-number methods of calculation gradually evolve into digit-based 
algorithms. 

 The intertwinement principle means mathematical content domains such as number, 
geometry, measurement, and data handling are not considered as isolated curriculum 
chapters, but as heavily integrated. Students are offered rich problems in which they can 
use various mathematical tools and knowledge. This principle also applies within domains. 
For example, within the domain of number sense, mental arithmetic, estimation and 
algorithms are taught in close connection to each other. 

 The interactivity principle of RME signifies that learning mathematics is not only an 
individual activity but also a social activity. Therefore, RME favors whole-class 
discussions and group work which offer students opportunities to share their strategies and 
inventions with others. In this way students can get ideas for improving their strategies. 
Moreover, interaction evokes reflection, which enables students to reach a higher level of 
understanding. 

 The guidance principle refers  to  Freudenthal’s  idea  of  ‘guided  re-invention’  of  
mathematics. It implies that in RME teachers should have a pro-active role in  students’  
learning and that educational programs should contain scenarios which have the potential 
to work as a  lever  to  reach  shifts  in  students’  understanding.  To realize this, the teaching 
and the programs should be based on coherent long-term teaching-learning trajectories. 

 

Various local instruction theories 
Based on these general core teaching principles a number of local instruction theories and 
paradigmatic teaching sequences focusing on specific mathematical topics have been 
developed over time. Without being exhaustive some of these local theories are mentioned 
here. For example, Van den Brink (1989) worked out new approaches to addition and 
subtraction up to twenty. Streefland (1991) developed a prototype for teaching fractions 
intertwined with ratios and proportions. De Lange (1987) designed a new approach to 
teaching matrices and discrete calculus. In the last decade, the development of local 
instruction theories was mostly integrated with the use of digital technology as investigated by 
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Drijvers (2003)  with  respect  to  promoting  students’  understanding  of  algebraic  concepts  and  
operations. Similarly, Bakker (2004) and Doorman (2005) used dynamic computer software 
to contribute to an empirically grounded instruction theory for early statistics education and 
for differential calculus in connection with kinematics respectively. 

The basis for arriving at these local instruction theories was formed by design research, as 
elaborated by Gravemeijer (1994), involving a theory-guided cyclic process of thought 
experiments, designing a teaching sequence and testing it in a teaching experiment, followed 
by a retrospective analysis which can lead to necessary adjustments of the design. 
Last but not least, RME also led to new approaches to assessment in mathematics education 
(De Lange 1987; Van den Heuvel-Panhuizen 1996). 
 

Implementation and impact 
In the Netherlands, RME had and still has a considerable impact on mathematics education. In 
the 1980s, the market share of primary education textbooks with a traditional, mechanistic 
approach was 95% and the textbooks with a reform-oriented approach – based on the idea of 
learning mathematics in context to encourage insight and understanding – had a market share 
of only 5%. In 2004, reform-oriented textbooks reached a 100% market share and mechanistic 
ones disappeared. The implementation of RME was guided by the RME-based curriculum 
documents including the so-called ‘Proeve’ publications by Treffers and his colleagues, which 
were published from the late 1980s, and the TAL teaching-learning trajectories for primary 
school mathematics, which have been developed from the late 1990s. 

A similar development can be seen in secondary education, where the RME approach also 
influenced textbook series to a large extent. For example, Kindt (2010) showed how 
practicing algebraic skills can go beyond repetition and be thought-provoking. Goddijn et al. 
(2004) provided rich resources for realistic geometry education, in which application and 
proof go hand in hand. 

Worldwide, RME is also influential. For example, the RME-based textbook series 
‘Mathematics  in  Context’  has  a  considerable  market  share  in  the  USA. A second example is 
the RME-based ‘Pendidikan  Matematika  Realistik  Indonesia’  in Indonesia. 
 

A long-term and ongoing process of development 
Although it is now some forty years from the inception of the development of RME as a 
domain-specific instruction theory, RME can still be seen as work in progress. It is never 
considered a fixed and finished theory of mathematics education. Moreover, it is also not a 
unified approach to mathematics education. That means that through the years different 
emphasis was put on different aspects of this approach and that people who were involved in 
the development of RME mostly researchers and developers of mathematics education, and 
mathematics educators from within or outside the Freudenthal Institute  put various accents 
in RME. This diversity, however, was never seen as a barrier for the development of RME, 
but rather as stimulating reflection and revision, and so supporting the maturation of the RME 
theory. This also applies to the current debate in the Netherlands (see Van den Heuvel-
Panhuizen 2010) which voices the return to the mechanistic approach of four decades back. 
Of course, going back in time is  not  a  ‘realistic’  option,  but  this debate has made the 
proponents of RME more alert to keep deep understanding and basic skills more in balance in 
future developments of RME and to enhance the methodological robustness of the research 
that accompanies the development of RME. 
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