E-TEXTBOOK FOR MATHEMATICAL INQUIRY : DESIGN of ENGAGEMENTS & BOUNDARIES

Michal Yerushalmy with Elena Naftaliev

Department of Mathematics Education University of Haifa, Israel <u>michalyr@edu.haifa.ac.il</u>

Mathematical Inquiry Engagement with empirical and formal aspects

- [Having] a primitive conjecture
- Proof (a rough thought, experiment, an argument)
- Global counterexamples to the primitive conjecture
- Proof re-examined
- Primitive conjecture improved
- Consequences and counterexamples turn into examples of a new inquiry

- Rules, norms & Guidance
- A curate exhibition
- A few central objects
- Many galleries
- (Too) Many exhibits & exhibited items
- Do-It-Yourself stations

In the classroom

2

Textbook Culture Characteristics

Love and Pimm's (1996) "text on texts"

- A textbook is a message from the professional community to students about what they should learn
- It also represents the ideas of the author about how the content should be taught and learned
- It plays a central role in school pedagogy and classroom norms, and its *authoritative image* has been the dominant aspect of the common classroom culture often identified as *textbook culture*
- Textbooks are linear and demand "linear textual flow of reading" (p. 381);
- Textbooks are closed -- have been **created in the past**
- Traditionally , it includes problems for exercising but not aim at questioning the content

Multiple Resources is the key aspect of current eTextbooks

Source: Korea Education and Research Information Service (KERIS), 2007

What's between "collection" & eTextbook?

My contribution aims at exploring design principles of Interactive textbook when *authored to be delivered* by technology (as opposed to *adopted for* technology)

- I would focus on the challenge of designing **non-sequential textbook** to turn by the teacher into instructional material
- I would zoom into the challenge of designing and analyzing multimodal sequence of interactive tasks
- A visual-semiotic framework has been developed to serve as the tool for analyzing students' learning with interactive tasks
- I would illustrate how this framework could serve designers and teachers
- Implications & Redesigning: questioning the stability of design principles

Design Non-sequential Textbook

- The flexible structure and the features designed to create reader engagement challenge key functions of the textbooks as a complete presentation of "truth" ordered in the past into a single possible logical sequence
- I argue for the importance of
 - taking a view to mathematic subject matter
 - having tools reflecting this view making it transparent to the capacity to design textbook for inquiry curriculum

Nonlinear texts: Designing for Engagement

Writing about the meanings of composition, Kress and van Leeuwen (The Grammar of Visual Design 1996) observed non-linear texts imposing paradigmatic

"They [texts] select the elements that can be viewed and present them according to a certain paradigmatic logic... but leave it to the reader to sequence and connect them"

Linear Text	Non Linear Text
"an exhibition in which the paintings are hung in long corridors through which the visitors must move, following signs, to eventually end up at the exit,"	"exhibition in a large room which visitors can traverse any way they like It will not be random that a particular major sculpture is placed in the center of the room, or that a particular major painting has been hung on the wall opposite the entrance, to be noticed first by all visitors entering the room"

"Linear and non-linear texts thus constitute two modes of reading and two regimes of control over meaning" (p. 223)

Taking a view & Reflecting this view: An example of a design tool for Algebra

Function	Representation	re- Representation	Transformations	Unary operations	Binary operations	Comparisons
Linear						
D						
Power						
Polynomial						
Quadratic						
Rational						
Irrational						
Periodic						
Exponential						

VisualMath eBook Structure that reflects a view

List of Activities

The table lists the names of a	ll the activities and a b	rief description o	feach.	
	Linear F	Functions on intervals	Use this tool to write up to 4 functions defined on intervals, to specify the ends of the intervals within which each	5 13 14 F
Representations of linear functions	The relations betwee changes in one repre	1	function is defined, and to write the appropriate expression in each interval.	
Rate of change of linear functions	Expressing the rate (a function.			-2)+3 \$(x)=
Transformations of graphs	Operations that chan families of functions	Function fitting	Use this tool to fit a linear or quadratic function to a collection of ordered pairs and points that represent them. Functions are represented by means of correspondence means when the and propts.	· · · · · · · · · · · · · · · · · · ·
Addition and subtraction of linear functions	Arithmetic operation of functions. Relatio those of the function		דטוני, ימוטר ומטוני, מוט צומןזוג.	
	them.			
Equivalent expressions of functions	Writing different cor ways of writing a co	<u>Transformations</u> <u>of graphs</u>	Use this tool to write expressions of functions and perform geometric transformations on graphs (translations, stretching, and mirroring) while tracking the changes the	
Functions defined on intervals	Functions that behav be described using f		function undergoes in its various representations.	
	Quadratic			
Equivalent quadratic expressions	Switching between v quadratic functions:			
Graph transformations: the vertex form	Operations that chan families of functions	Representation of comparisons	Use this tool to write expressions of two functions and an equality sign between them (equality and different types of inequality), to obtain their graphic representations and value tables, and to view the solution in both	
Adding functions: the	Addition of function		representations. When you pass the mouse over the horizontal lime that designates the solution the value of the solution appears.	

Forming Trajectories

The Equations tour

The Rate of Change tour

Products of Linear Functions

The Algebraic Structure tour

Design for Coherence: Multimodal Instructional Sequence

Traditional aspects

- 1. Mathematical processes: Modeling, manipulating, Reasoning. communicating
- 2. Type, Size, modes of communication, openness, difficulty: exercise, investigation, essay
- 3. Scaffolding

Multimodal aspects

- Traditional text page offers clear way to follow
- The interactive page requires from the reader to order & often it takes its logic from visuals

Tools' space

Balanced Sequence of Tasks

Help Download Activity Open Activity Linear-Map Quadratic-Map Tools Index Activity Tools 44 Translations Graph Transformations: The Vertex Form 44 Streching Transformations of $f(x)=x^2$ 44 The Vertex Form This activity involves operations which change a function by changing its graph: these operations are called transformations of the graph. Using transformations, we can Tasks start from one function and generate a family of functions which share some common Passing between features. functions Changing a function The dynamic figures below are meant to give a "feel" for transformations. In these Families of functions figures you can translate and strech graphs to get new graphs. In the first figure, when you point to the graph and the cursor changes from "arrow" to "hand", you can Product Form and transformations translate the graph in various directions. In the second figure, when you point to the ✓ Constructing graph and the cursor changes from "arrow" to "hand", you can strech the graph horizontally by making horizontal motions with the cursor, or vertically by making functions by transformations vertical motions. Transformations of $f(x)=x^2$ The Vertex Form Translation Streching Constructing correspondence Converting to Vertex Form · Pizza prices • Tag Exercises 44 Exercise 1 44 Exercise 2 44 Exercise 3 The following dynamic figure presents families of functions which are generated by translations or streching. By choosing the type transformation and using the "transform" button, you can generate different examples of such families. Families generated by transformations

Design of Representation/Feedback

Choice of Examples' space

Scaffolding practice

Activity Tools M The difference equation Tasks	۲ -برا	Solving Equations
• vertex form = constant		the second s
 quadratic function = constant The difference equation Camenter's problem 		How can you find solutions to equations? You can use graphs and value-tables. You can also employ algebraic methods: modifyin an equation to obtain another equation with the same solutions as the original (an equivalent equation), but with an easier to read solution. For example, the linear equation
• Playing fields		3x+1=x+9 is equivalent to the equation $2x=8$, which has an easy-to-read solution. This activity is about solving quadratic equations using algebraic methods.
o ^r Warm-up ^{or} Table designs		Some of the tasks in this activity suggest ideas related to finding the solutions of quadrat equations.
• Isosceles triangles		Other tasks present several problems that can be solved more easily by constructing quadratic equations and solving them.
Cutting circles		
Pairs of numbers		Droparo a roport on solving quadratic equations
Exercises	ļ	Frepare a report on solving quadratic equations
44 Exercise 1 44 Exercise 2		 Explain how to solve various quadratic equations. Give examples of equations and show how you solve them. In your examples, display cases that are different both in the form of the equation and in the number of solutions
44 Exercise 3		Use the tasks and exercises in this activity if you need ideas for various forms of quad
44 Exercise 4		 Show how you check and verify your results. Do you think that you have a general method for solving any quadratic equation? If you
44 Exercise 5		 tnink you do, explain what it is, if not, give examples of equations that you find problem Compare methods of solving equations by algebraic processes with methods of solvi
44 Exercise 6		equations using graphs or value tables.
¥ Exercise 7		

The dynamic figure below presents graphic examples of linear functions and of their product function.

Definition

A semiotic approach for the Design of Tasks: Interactive Diagrams

A **diagram** is a representation, visual and other, containing clarifying or demonstrating information

A diagram that presents specific information presents a point of view thus **implicitly engaging** the viewer in meaningful interpretations

An **interactive diagram** (ID) is built around a pre-constructed example

The Interactive Diagram **requires from the viewer to take action** and change the diagram within given limitations

An ID differs from an **interactive tool** in that it is built for a specific task and contains a complete example

The framework: Visual semiotic analysis of ID functions

I adopted a framework developed by semiotic research of text and visuals and provided categories that would allow an orderly discussion of the differences between the traditional page in math textbooks and the new page that derives its principles of design and organization from the screen and the affordances of technology (Yerushalmy 2005)

The presentational function	The orientational function	The organizational function
Random examples Specific examples Generic examples	The IDs is designed to be a sketch and/or a source of accurate information	Illustrating IDs Elaborating IDs Narrating IDs

Design decisions: The 3 organizational functions

The design of an *Illustrating IDs* one representation and the minimal necessary control for operating with it

The boundaries that we used in *Narrating IDs'* design were:
(a) a well articulated examples
(b) support for the preferred solution path
(c) small number of representations and possibilities of elaboration

The important components in the design of the *Elaborating IDs* rich tools and linked representations that enable various directions in the search for a solution

Comparative micro analysis of three series of activities

Modeling: Comparative Microanalysis of Interaction components

	Illustrating diagram	Elaborating diagram
Animation		
Motion control	"Run" "Stop" "Initialize"	"Run" "Stop" "Initialize"
Information choice	Not available	Choice of activated runners
Representations		
1D graph of activated runners	Not available	Discrete traces on running track
2D graph of activated runners	Not available	Hotlink animated motion to graph Manual dragging and marking Time and distance information
Numeric information	Non-linked table of distances at 6 positions	Table of distances linked to traces Time and distance created and displayed along the run Hot-linked timer Hot-linked active row
Links		
Links between representations	Not available	2D graph and animation 1D graph and animation 1D and 2D graphs, color coded Table, 2D graph, and animation

Table 1 Comparative view of the interaction components of the two IDs

Formulating: Comparative Microanalysis of Interaction components

	Illustrating ID	Elaborating ID	Narrating ID
Examples			
Appearance of the example	Example appears as a graph line	Example appears as a graph line and its table of values	Example appears as two lines: a target graph (red graph) line and another graph (blue graph) line that reflects the changing parametric expression
Interaction with the example Representations and tools	View	View and add your own	View, change, and compare
Graph	A sketch that can be made accurate graph	A sketch that can be made accurate graph	A sketch that can be made accurate graph
Graph tools	Revealing the coordinates of points	Revealing the coordinates of points Change scale	Revealing the coordinates of points Change scale
Algebraic expression	Not available	Function expressions in any format hot-linked to a graph and a table of values (up to 3 simultaneous expressions)	Function expression and parametric expression in the form: f(x) = a(x-c) + m hot-linked to a graph
Algebraic expression tools		Free syntax input of function expressions	Changing values of parameters of the given parametric expression
Table of values	Not available	A given table of $(x, f(x))$. Hot-linked to point in the graph. Values spread homogeneously according to a specified scale and specified <i>delta</i> x	Not available
Table of values tools		Control <i>delta x</i> Input any x value and read <i>f</i> (x) values	

Research goals & design

- What are the characteristics of solving tasks which are presented as text with IDs?
- How do the characterizations of processes vary in accordance to the three designed organizational functions of IDs?

	Student A	Student B	Student C	Notes
Stage A		The preliminary task		The same task
Stage B	illustrating ID	narrating ID	elaborating ID	One of 3 comparable tasks
Stage C	Students assembled in a group and were asked to describe the technique they used in their solution, to present their use of the diagram, to reflect upon their moves and to be involved in a conversation regarding other students' techniques			

How do the characterizations of processes vary in accordance to the three designed organizational functions of IDs?

Illustrating IDs

Can be helpful in consolidating relevant knowledge

Wang is third place, who is starting to slow down.

Narrating IDs

Can be a form of instruction toward development of new scientific concepts

Elaborating IDs

Leading to different problem-solving processes and a variety of solutions

How do the characterizations of processes vary

Illustrating IDs

Can be helpful in consolidating relevant knowledge

Narrating IDs

Can be a form of instruction toward development of new scientific concepts

enlarged and diminished back and forth, this time by saving her tracks

Elaborating IDs

Leading to different problem-solving processes and a variety of solutions

What are the characteristics of activity consisted of reading and solving tasks which are presented as text with IDs? Major Finding

Personalization of the text

Unfolding the representativeness of the ID's example as carriers of the general meaning

Development of mathematical principal ideas within the boundaries designed in the IDs Three patterns of personalization of the text:

- (a) attention to details in the given example resulting in the construction of additional details to the original example
- (b) changing the given example, generating new examples
- (c) rephrasing the question of the task, posing new question

Two settings in which an example served to start the investigation and the processes of unfolding the representativeness of the examples:

- (a) Changing a given example by generating similar or new examples
- (b) Interacting with components of the given examples (the representations, as well as the linking and control tools)

The study highlights the common features that support the processes in each setting and highlights differences and makes distinctions in the processes which are rooted in part in the compared design variations

Development of mathematical principal ideas within the boundaries designed in the Narrating IDs

(a) Narrating IDs can be a form of instruction toward the development of new mathematical knowledge for students

(b) Narrating ID designs limit the student's action and so support guidance, and at the same time remain an open space for student ideas

(c) The NID organized and directed the process of development of the students' knowledge but the students controlled the task and were empowered by the changes they chose to make in the presentation of the task and by formulating new questions

Designing Interactive Textbook or Transparent Coherence of Digital Resources Summary

Non sequential Textbook	Multimodal Sequence	Interactive Task
 Choosing a view of the subject Identify objects, operations & representations which are central to this view Design a conceptual tool to map the mathematical occurrences Design the textbook sections to correspond to the map 	Tools reflect the curricular agenda: Purpose, Tone, Difficulty, Type of Reasoning	 The visual-semiotic analysis is a useful instrument for the design of interactive tasks The organizational function of interactive task [illustrating, elaborating or narrating] corresponds to pedagogical purposes, instruction goals & guidance Interactive diagram has noticeable effect on

problem solving processes

Challenges for Research: Textbook in the near future

- Stability of the finding & views upon new technology (personal tablet, touch interface)
- Learning Management System The era of the Big Data
- Collaborative learning setting
- Formative & Summative assessment
- Teacher's designed textbooks