
The work of Barry Mazur
Henri Darmon

Abstract
Barry Mazur is awarded the 2022 Chern Medal “for his profound discoveries in topology,
arithmetic geometry and number theory, and his leadership and generosity in forming the
next generation." This laudatio surveys some of the highlights of Mazur’s remarkable
mathematical career.

Mathematics Subject Classification 2020
01A70

Keywords
Schoenflies conjecture, primes, knots, elliptic curves, modular curves, modular forms,
Eisenstein ideal, Galois representations, deformation theory, eigencurves, Fermat’s last
theorem, Iwasawa theory, 𝑝-adic 𝐿-functions, Euler systems, rational points

© 2022 International Mathematical Union
Preliminary version, to appear in Proc. Int. Cong. Math. 2022, Vol. 1.
DOI 10.4171/ICM2022/217



Barry Mazur was born in 1937 in New York City. After graduating from the Bronx
High School of Science in 1954, he completed his undergraduate studies at MIT in just two
years, and his PhD at Princeton University in a further two years, during which he also spent
a semester in Paris, attending, among others, the seminars of Cartan and Chevalley. After a
one-year stint at the Institute for Advanced Study, he joined the faculty of the Mathematics
Department at Harvard in 1959, first as a member of Harvard’s Society of Fellows, and
currently, as the Gerhard Gade University Professor.

Through a remarkable career spanning over six decades at Harvard alone, Barry
Mazur has profoundly influenced the scientific outlooks of generations of graduate students,
postdoctoral fellows, and colleagues. He has shaped the modern landscape of number theory
by successfully tackling the most difficult problems in the area, laying the groundwork for
important theories, and initiating legions of disciples to fertile new perspectives. His scientific
achievements place him squarely among the greatest mathematicians of the 20th century. The
following report touches on a few of the topics, in roughly chronological order, where Barry
Mazur has had a transformative impact.

1. Geometric and differential topology
(References: [1]-[19], [15]).
Barry Mazur’s earliest contributions were to the field of geometric topology and

differential geometry. His 1959 PhD thesis at Princeton [4] caused a sensation by proving
the generalised Schoenflies conjecture, a higher-dimensional generalisation of the Jordan
curve theorem. It asserts that an (𝑛 − 1)-sphere 𝑆 embedded in the 𝑛-sphere 𝑆𝑛 in a way that
extends to an embedding of a small thickening of 𝑆 can be mapped to the standard 𝑛 − 1
sphere by a homeomorphism of 𝑆𝑛 [4–6]. The necessity of some regularity hypotheses on the
embedding is illustrated by well-known counterexamples like the Alexander horned sphere.
One of Mazur’s ingenious ideas in the proof is the eponymous “swindle", which demonstrates
that the connected sum of two non-trivial knots or manifolds is necessarily non-trivial. The
seductively simple argument is based on the fact that infinite connected sums make rigorous
sense in the setting of “wild knots"; if 𝐾1 and 𝐾2 are knots or manifolds for which 𝐾1 + 𝐾2

is trivial, then

𝐾1 = 𝐾1 + (𝐾2 + 𝐾1) + (𝐾2 + 𝐾1) + · · · = (𝐾1 + 𝐾2) + (𝐾1 + 𝐾2) + · · · = 0,

and likewise for 𝐾2. Mazur was awarded the Oswald Veblen Prize of the AMS with Morton
Brown in 1966 for his work on the generalised Schoenflies conjecture.

Among other key notions, Mazur also discovered, independently and at roughly the
same time as Valentin Poenaru, what are now commonly referred to in the literature as “Mazur
manifolds” or “Poenaru-Mazur manifolds" [7]: compact, contractible, smooth four-manifolds
with boundary which are not diffeomorphic to the standard four-ball.

Mazur’s article [15] on dynamical systems, in collaboration with Michael Artin,
studies the space F of 𝑘-differentiable self-maps on a compact differentiable manifold 𝑀 ,
equipped with the suitable (𝐶𝑘) topology, and proves that there is a dense subset of F consist-
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ing of maps whose number of isolated periodic points of period 𝑛 grows at most exponentially
with 𝑛. The proof is obtained by invoking an approximation theorem of Nash to reduce to an
analogous statement for real algebraic varieties, which can then be tackled with the methods
of intersection theory of algebraic cycles.

2. Algebraic geometry
(References: [15], [20]-[29].)
With its appealing blend of differential and algebraic methods, [15] marked a gradual

widening of Mazur’s mathematical interests to encompass algebraic geometry at a time when
the subject was experiencing a profound renewal under the impetus of the Grothendieck
school. It is during this period, in the 60’s and early 70’s, that Mazur produced a number of
seminal works in algebraic geometry, nourished by regular visits to the IHES.

His articles [20] and [21] study the interplay between the Frobenius operator and the
Hodge filtration on the de Rham cohomology of a variety 𝑉 over Q𝑝 admitting a smooth
model over Z𝑝 . It establishes the fundamental “Mazur inequality", originally conjectured
by Nick Katz [132], asserting that “the Newton polygon lies above the Hodge polygon". The
Newton polygon measures the slopes, or valuations at 𝑝, of the eigenvalues the frobenius
endomorphism acting on the 𝑖-th cristalline cohomology of 𝑉 , or equivalently, of the canon-
ical lift of Frobenius to the de Rham cohomology of𝑉 overQ𝑝 . The Hodge polygon encodes
the dimensions of the successive quotients of this de Rham cohomology relative to the Hodge
filtration. The latter invariants were classically calculated via complex transcendental meth-
ods, by studying the Hodge decomposition on the de Rham cohomology of varieties over C.
Mazur’s inequality captures a fundamental feature of the behaviour of the algebraic de Rham
cohomology of a variety under “mod 𝑝 reduction", and provides subtle 𝑝-adic information
about the zeta-functions of varieties over finite fields of characteristic 𝑝.

Mazur’s treatise [22] with Messing on cristalline cohomology represents a founda-
tional contribution to the study of 𝑝-adic cohomology theories. This subject has gradually
emerged as a powerful tool for understanding the 𝑝-adic representations of the Galois groups
of 𝑝-adic fields that arise from the étale cohomology of algebraic varieties. It has been vig-
orously developed in the past decades and acquired a growing importance in number theory,
notably in the theory of motives and in the Langlands program.

Some of Mazur’s later contributions incorporating perspectives from 𝑝-adic Hodge
theory shall be evoked in greater detail below, most notably, in §9, his celebrated conjecture
with Jean-Marc Fontaine characterising the global 𝑝-adic Galois representations realised in
the 𝑝-adic étale cohomology of varieties over number fields. The theory of 𝑝-adic periods
also plays a key role in extending to higher weight modular forms the definition of the L-
invariant of Mazur, John Tate and Jeremy Teitelbaum arising in the leading terms of certain
𝑝-adic 𝐿-functions in the presence of an “exceptional zero" (cf. §8).

Another notable achievement from roughly this period is the article [28] with M.
Artin laying the foundations for a homotopy theory for schemes, based on the étale topology
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which had been introduced less than a decade earlier and has since come to play a central
role in arithmetic geometry.

3. Arithmetic topology
(Reference: [30].)
In his gradual transition from topology and geometry to number theory, Mazur seems

to have drawn guidance and inspiration from a suggestive analogy between knots and primes.
A knot is a copy of the circle 𝑆1 embedded in a three-sphere 𝑆3. Many invariants of

knots arise from studying the fundamental group of the knot complement. There is a beautiful
and tantalising parallel between this knot complement and the complement of a prime in the
scheme Spec(Z). Namely, the latter space shares some of the same homological properties
as 𝑆3 insofar as its interesting cohomology is concentrated in degree 3, whereas Spec(F𝑝)
behaves like a circle since its fundamental group is (topologically pro-) cyclic.

The pursuit of this analogy leads to a beguiling dictionary between number theory
and knot theory, in which quadratic reciprocity resonates with the symmetry of the linking
number of two knots, and the higher quadratic residue symbols of Redei can be envisaged
as analogues of the higher linking of knot configurations like the famous Borromean rings,
both notions being manifestations of higher Massey products.

Mazur’s unpublished but widely influential manuscript [30] enriches the number
theory-knot theory lexicon by explicating the parallel between the Alexander polynomial
of a knot and Iwasawa’s conjectural algebraic description of the Kubota-Leopoldt 𝑝-adic
zeta-function as the characteristic power series of a certain Iwasawa module constructed out
of ideal class groups of 𝑝-power cyclotomic fields. The Iwasawa module in question can
be identified via global class field theory with the maximal abelian (pro-𝑝) extension of the
maximal abelian extension of Q ramified only at 𝑝. It can then be understood as the second
graded piece relative to a natural filtration on (the pro-solvable completion of) the funda-
mental group of the complement of Spec(F𝑝) in Spec(Z). Iwasawa’s interpretation of the
𝑝-adic zeta-function resembles the Alexander polynomial of a knot 𝐾 , which encodes the
characteristic polynomial of a generator of the homology of the knot complement acting on
the next graded piece in the filtration of 𝜋1 (𝑆3 − 𝐾) given by its derived central series.

The rich analogy between knots and primes which guided Mazur in his transition
from topology to number theory has subsequently spawned an entire new field, known as
arithmetic topology, which is elegantly described in the recent textbook of Masanori Mor-
ishita [138]. (See also [146] for further striking manifestations of the analogy.)
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4. Torsion subgroups of elliptic curves
(References: [32]-[38], [122].)
The deep and systematic study of rational torsion points on elliptic curves carried

out in roughly the decade from 1975 to 1985 stands among Mazur’s landmark contributions
to number theory.

An elliptic curve over a field 𝐹 is a smooth projective curve 𝐸 of genus one over 𝐹
equipped with a distinguished rational point𝑂 ∈ 𝐸 (𝐹). What makes these curves particularly
rich arithmetically is that they are endowed with the structure of a projective algebraic group.
In particular, the set 𝐸 (Q) of rational points on an elliptic curve over Q is an abelian group,
known to be finitely generated by the Mordell-Weil theorem, and thus is isomorphic to

𝐸 (Q) = Z𝑟 × 𝑇,

where𝑇 is a finite group, called the torsion subgroup of 𝐸 overQ. Mazur’s celebrated theorem
[36] lists all the possibilities for the groups 𝑇 that can arise in this way:

Theorem 4.1. The torsion subgroup 𝑇 of an elliptic curve over Q can only be isomorphic to
one of the following 15 groups:

Z/𝑛Z, with 1 ≤ 𝑛 ≤ 10 or 𝑛 = 12, Z/2Z × Z/𝑛Z with 𝑛 = 2, 4, 6, or 8.

This striking result was apparently anticipated by the Italian geometer Beppo Levi
[142] in 1908. It became more widely known as a precise conjecture formulated by Andrew
Ogg [139] and provides the backdrop for an active area of investigation to which mathemati-
cians like Kamienny [130], Merel [135], and many others, have made important subsequent
contributions. Indeed the study of rational points on modular curves remains a lively terrain
of investigation to which a variety of approaches grounded in the pioneering insights of [36]

have been applied (cf. for instance [133], [134] [136], [137], [128], [127], . . .).
Beyond the appealing nature of the final statement “for its own sake", the perspectives

that Mazur introduced into the subject in order to prove Theorem 4.1 also had a tremendous
impact on other related developments. Both the statement and the proof of Theorem 4.1 are
indispensable ingredients in the proof of the modularity of elliptic curves and of Fermat’s
Last Theorem, as will be explained further in Sections 5, 6, and 10.

In a subsequent article [37], Mazur also classifies the primes 𝑁 for which there are
elliptic curves over Q possessing a rational subgroup of order 𝑁 , i.e., a non-trivial isogeny
of degree 𝑁 defined over Q, simplifying his earlier proof of Theorem 4.1 at the same time:

Theorem 4.2. Let 𝑁 be a prime number such that some elliptic curve admits an isogeny of
degree 𝑁 defined over Q. Then 𝑁 = 2, 3, 5, 7, 13 (with infinitely many possible 𝐸 for each 𝑁)
or 𝑁 = 11, 17, 19, 37, 43, 67, or 163.

The values𝑁 = 11,17,19, . . . ,163 are primes for which the imaginary quadratic field
Q(
√
−𝑁) has class number one. Elliptic curves with complex multiplication by the maximal

orders of these fields admit models over Q and the kernel of multiplication by
√
−𝑁 gives a

cyclic subgroup of order 𝑁 in 𝐸 , defined over Q. It is a measure of the delicacy of Mazur’s
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argument that it accounts for these arithmetically non-trivial exceptions while ruling out all
other eventual occurrences.

Theorem 4.1 has been extended by Sheldon Kamienny, leading to the classification
of possible torsion subgroups for elliptic curves defined over number fields of small degree
over Q (cf. [130] and [38]). The most definitive result in this direction was then obtained by
Loïc Merel [135], who showed that the torsion subgroups of elliptic curves defined over a
number field 𝐾 are bounded by a constant 𝐵𝐾 depending only on 𝐾 , and indeed, only on the
degree of 𝐾 over Q.

5. Rational points on modular curves
Theorems 4.1 and 4.2 can be recast in terms of rational points on modular curves,

which arise naturally as moduli spaces parametrising isomorphism classes of elliptic curves
with auxiliary “level structures".

If 𝐸 is an elliptic curve over a field 𝐹 in which 6 is invertible, there are two rational
functions 𝑥 and 𝑦 which are regular on 𝐸 − {𝑂}, have poles of order 2 and 3 respectively at
𝑂, and satisfy an equation of the form

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ∈ 𝐹.

The functions 𝑥 and 𝑦 are uniquely determined by these properties up to replacing (𝑥, 𝑦)
by (𝑡2𝑥, 𝑡3𝑦) for some 𝑡 ∈ 𝐹× , which has the effect of replacing the coefficients (𝑎, 𝑏) by
(𝑡4𝑎, 𝑡6𝑏). In particular, the expression

𝑗 (𝐸) := 1728
4𝑎3

4𝑎3 + 27𝑏2 ,

known as the 𝑗-invariant of 𝐸 , depends only on (the 𝐹̄-isomorphism class of) 𝐸 and not
on the choice of 𝑥 and 𝑦. It is in fact a complete isomorphism invariant: two elliptic curves
over 𝐹 are isomorphic (over the algebraic closure of 𝐹) precisely when they have the same
𝑗-invariant. The affine 𝑗-line, viewed as an algebraic curve over Q, is thus a (coarse) moduli
space of elliptic curves: its points over any field 𝐹 of characteristic zero are in bĳection with
the 𝐹̄-isomorphism classes of elliptic curves over 𝐹. This affine 𝑗-line is the simplest instance
of a modular curve.

More interesting examples can be obtained by classifying elliptic curves with extra
level structure. A typical level 𝑁 structure on 𝐸 amounts to the datum of a subgroup or a
point of order 𝑁 on 𝐸 , or eventually a basis for the full 𝑁-torsion of 𝐸 . The curves that
classify solutions of these problems are commonly denoted𝑌0 (𝑁),𝑌1 (𝑁), and𝑌 (𝑁) respec-
tively. They are affine curves over Q, which can be completed to smooth projective curves
by adjoining to them a finite set of cusps: the resulting projective curves are called 𝑋0 (𝑁),
𝑋1 (𝑁), and 𝑋 (𝑁).

The following is merely a reformulation of Theorem 4.2 from the perspective of
rational points on modular curves:
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Theorem 5.1. Let 𝑁 be a prime number for which 𝑌0 (𝑁) (Q) is non-empty. Then 𝑁 =

2, 3, 5, 7, 13 (when 𝑋0 (𝑁) is isomorphic to the projective line, and has infinitely many ratio-
nal points) or𝑁 = 11,17,19,37,43,67, or 163 (when𝑌0 (𝑁) contains a finite set of “sporadic"
rational points).

Concrete (but ultimately not very useful) equations for modular curves can be written
down. If 𝐸 and 𝐸 ′ are related by a cyclic isogeny of degree 𝑁 , then their 𝑗-invariants 𝑗 and 𝑗 ′

give rise to a root ( 𝑗 , 𝑗 ′) of the so-called modular polynomial Φ𝑁 (𝑥, 𝑦), which is a rational
polynomial of bidegree 𝑁 + 1 when 𝑁 is a prime number. The curve 𝑌0 (𝑁) is birationally
equivalent to the plane curve defined by this polynomial. These defining equations tend to
be quite complicated. For instance,

Φ2 (𝑥, 𝑦) = 𝑥3 − 𝑥2𝑦2 + 1488𝑥2𝑦 − 162000𝑥2 + 1488𝑥𝑦2 + 40773375𝑥𝑦

+8748000000𝑥 + 𝑦3 − 162000𝑦2 + 8748000000𝑦 − 157464000000000,

and tackling the associated diophantine equations through a direct elementary approach
seems decidedly unpromising.

Mazur’s opening gambit is to embed the modular curve — 𝑋0 (𝑁), say — in its Jaco-
bian 𝐽0 (𝑁), an abelian variety whose rational points can then be studied through Fermat’s
method of infinite descent, in the conceptual modern framework given for it by André Weil,
in which the consideration of explicit equations can largely be avoided.

Mazur is able to show that if𝑁 is a prime for which 𝐽0 (𝑁) is non-trivial (i.e., if𝑁 = 11
or 𝑁 > 13) then this jacobian admits non-trivial quotients with finite Mordell-Weil group over
Q, which he calls Eisenstein quotients. This immediately implies, a decade before Faltings’
proof of the Mordell conjecture, that 𝑋0 (𝑁) has finitely many rational points whenever it has
genus ≥ 1, and, with more care, can be used to derive bounds on the set of rational points
sufficiently precise to deduce Theorem 4.1, and, with even greater care, Theorem 4.2.

The Eisenstein quotients of 𝐽0 (𝑁) are attached to the different primes 𝑝 dividing
the numerator of (𝑁 − 1)/12, and denoted 𝐽 (𝑝)eis (𝑁). The Mordell-Weil group 𝐽 (𝑝)eis (𝑁) (Q)
contains an element of order 𝑝, and it becomes natural to calculate this Mordell-Weil group
by a 𝑝-descent argument involving the Selmer group for a 𝑝-torsion module on which the
Galois group of Q acts through an abelian quotient. The “Eisenstein descent" which Mazur
developed for this purpose thus places the study of 𝐽 (𝑝)eis (Q) in proximity with more classical
questions surrounding the class groups of cyclotomic fields.

In constructing 𝐽 (𝑝)eis and establishing the finiteness of its Mordell-Weil group, Mazur
is able to marshal several special features of modular curves that make their diophantine
properties more amenable to analysis. Most critically, modular curves are endowed with a
plentiful supply of algebraic correspondences over Q, which emerge naturally from their
moduli description and are geometric incarnations of Hecke operators. The resulting endo-
morphisms break up 𝐽0 (𝑁) into arithmetically simpler pieces with a large endomorphism
algebra, whose Tate modules give rise to (compatible systems of) two-dimensional ℓ-adic
representations of Gal(Q̄/Q). These abelian variety quotients “of GL(2) type" offer a fertile
testing ground for the general program of understanding linear representations of the Galois
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groups of number fields, a cornerstone of the Langlands program. The two-dimensional rep-
resentations of Gal(Q̄/Q) represent a prototypical first step in this program, going beyond
the abelian setting of global class field theory. It is partly for this reason that Mazur’s Eisen-
stein descent has largely transcended in importance the diophantine application for which it
was originally designed. The ideas Mazur introduced into the subject have played a key role,
notably, in Andrew Wiles’ proof [148] almost 20 years later of the Taniyama-Weil conjecture
on the modularity of elliptic curves over Q, as will be explained further below.

The non-trivial point of order 𝑝 on 𝐽0 (𝑁) which Mazur so spectacularly exploits
in his proofs of Theorems 4.1 and 4.2 arises from the image of a divisor supported on the
cusps of 𝑋0 (𝑁). In addition to the cusps, the modular curve 𝑋0 (𝑁) is also endowed with
a plentiful supply of points defined over various ring class fields of imaginary quadratic
fields – the Heegner points arising from the moduli of suitable elliptic curves with complex
multiplication. A formula of Benedict Gross and Don Zagier connects the heights of these
points to the first derivatives of the Hasse-Weil 𝐿-series of abelian variety quotients of 𝐽0 (𝑁).
In the late 1980’s, Victor Kolyvagin parlayed this connection into a proof of the finiteness of
the Mordell-Weil group of any quotient of 𝐽0 (𝑁) whose Hasse-Weil 𝐿-series does not vanish
at the center, consistent with the Birch and Swinnerton-Dyer conjecture for these quotients.
The somewhat larger quotient of 𝐽0 (𝑁) with finite Mordell-Weil group that emerges from
Kolyvagin’s theorem is called the winding quotient (a terminology that can be traced back
to Mazur’s “winding element" [42]). The winding quotient was later exploited to great effect
by Merel in his extension of Theorem 4.1 to number fields of arbitrary degree [135].

6. Fermat’s Last Theorem
Mazur’s theorem 5.1 on rational points on modular curves asserts that an infinite

collection of curves, of increasing genus and arithmetic complexity – the modular curves
𝑋0 (𝑁) indexed by the parameter 𝑁 – have no rational points except the trivial ones when 𝑁
is large enough. This statement is reminiscent of Fermat’s Last Theorem, which makes the
same assertion for the Fermat curves 𝐹𝑁 with equation

𝐹𝑁 : 𝑥𝑁 + 𝑦𝑁 = 𝑧𝑁 .

The relation between the two statements goes far beyond a superficial analogy. Theorem 5.1
turns out to be a critical ingredient – indeed, the key diophantine ingredient – in the proof of
Fermat’s Last Theorem.

The tight connection between the diophantine properties of modular curves and
Fermat curves can seem surprising at first, since only rarely are there explicit maps between
the two types of curves. A charming exception to this statement is the modular curve 𝑋 (7)
with full level 7 structure, a genus 3 curve having a maximal size automorphism group for
its genus, the group PSL(2, 7) of order 168. This property determines it uniquely up to
isomorphism over Q̄, and a model for it is provided by the famous Klein quartic with equation

𝑋 (7) : 𝑢3𝑣 + 𝑣3𝑤 + 𝑤3𝑢 = 0.
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It turns out that 𝑋 (7) is the image of the Fermat curve

𝐹7 : 𝑥7 + 𝑦7 + 𝑧7 = 0

under the degree 7 map 𝜋 : 𝐹7 → 𝑋 (7) sending (𝑥, 𝑦, 𝑧) ∈ 𝐹7 to

(𝑢, 𝑣, 𝑤) = 𝜋(𝑥, 𝑦, 𝑧) := (𝑥3𝑧, 𝑦3𝑥, 𝑧3𝑦).

A non-trivial solution to Fermat’s Last Theorem would thus give rise to a non-trivial rational
point on 𝑋 (7), and the assertion that this modular curve has no non-trivial rational points
(satisfying 𝑢𝑣𝑤 ≠ 0) therefore implies Fermat’s last theorem for exponent 7. More interesting
is the converse implication that was first proved by Hurwitz, namely, that 𝑋 (7) has no non-
trivial rational points because the same is true for 𝐹7. (At the time, Fermat’s last theorem for
exponent 7 was already known through the work of Lamé.) Hurwitz notes that if (𝑢, 𝑣, 𝑤) is
a point on the Klein quartic with integer coordinates, satisfying gcd(𝑢, 𝑣, 𝑤) = 1, then these
coordinates need not be pairwise coprime. Setting

𝑥 = gcd(𝑢, 𝑣), 𝑦 = gcd(𝑣, 𝑤), 𝑧 = gcd(𝑤, 𝑢),

a direct reasoning involving the fundamental theorem of arithmetic shows (after changing
the signs of 𝑥, 𝑦, and/or 𝑧 if necessary) that (𝑥, 𝑦, 𝑧) lies on the Fermat curve 𝐹7 and that
𝜋(𝑥, 𝑦, 𝑧) = (𝑢, 𝑣, 𝑤). Through this argument, Hurwitz shows that the map 𝜋 : 𝐹7 → 𝑋 (7) is
surjective on rational points. Unlike the purely algebraic implication

𝐹7 has a non-trivial rational point ⇒ 𝑋 (7) has a non-trivial rational point, (6.1)

the reverse implication is more genuinely arithmetic, resting on ingredients like unique fac-
torisation. Essential for this implication is the fact that the degree 7 map 𝜋 (viewed as a map
of Riemann surfaces, on the complex points of the curves, say) is everywhere unramified.

The proof of Fermat’s last theorem for the general (prime) exponent 𝑝 rests on an
analogous but substantially more general geometric relation between the modular curve
𝑋 (2𝑝) and the 𝑝-th Fermat curve 𝐹𝑝 . Namely, both are equipped with natural surjective
maps

𝐹𝑝
𝜋1−→ P1

𝜋2←− 𝑋 (2𝑝)

to the projective line P1 with “common local features". The map 𝜋1 sends the Fermat triple
(𝑥, 𝑦, 𝑧) to 𝑥𝑝/𝑦𝑝 , and the map 𝜋2 is simply the one that “forgets about the level 𝑝 structure",
sending a point on 𝑋 (2𝑝) to its natural image in 𝑋 (2), identified with the projective line by
viewing 𝜆 ∈ P1 as the parameter in the Legendre family of elliptic curves

𝑦2 = 𝑥(𝑥 − 1) (𝑥 − 𝜆).

Although they have different degrees and are defined on different curves, the maps 𝜋1 and
𝜋2 exhibit the following striking affinity: they are both ramified only at 0, 1 and∞, and their
ramification degrees at these three points are equal to 𝑝. This suggests that, if (𝑎, 𝑏, 𝑐) ∈
𝐹𝑝 (Q) is a non-trivial solution to Fermat’s last theorem, then the image 𝜋1 (𝑎, 𝑏, 𝑐) = 𝑎𝑝/𝑏𝑝 ∈
P1 (Q) ought to lift to a point of 𝑋 (2𝑝) whose field of definition exhibits a limited amount
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of ramification, bounded independently of the solution (𝑎, 𝑏, 𝑐). One is led to study the field
generated by the 𝑝-division points of the “Frey elliptic curve"

𝐸𝑎,𝑏,𝑐 : 𝑦2 = 𝑥(𝑥 − 𝑎𝑝) (𝑥 + 𝑏𝑝),

which is indeed (after eventually re-ordering 𝑎, 𝑏 and 𝑐 appropriately, and modifying their
signs) unramified outside of 2 and 𝑝.

The ultimate proof of Fermat’s Last theorem rests on a supremely delicate analysis
of this field, or, better yet, of the Z/𝑝Z- linear representation

𝜚𝑎,𝑏,𝑐 : 𝐺Q := Gal(Q̄/Q) −→ Aut(𝐸𝑎,𝑏,𝑐 [𝑝]) ≃ GL2 (Z/𝑝Z)

of the absolute Galois group of Q acting on the 𝑝-torsion points of 𝐸𝑎,𝑏,𝑐. The startling
insight that emerged from the work of Gerhard Frey, Jean-Pierre Serre [143], and Kenneth
Ribet [141], is that the modularity of 𝐸𝑎,𝑏,𝑐, which was ultimately proved by Wiles [148], can
be parlayed into the conclusion that 𝜚𝑎,𝑏,𝑐 is necessarily reducible. Because of this, any non-
trivial solution (𝑎, 𝑏, 𝑐) ∈ 𝐹𝑝 (Q) to Fermat’s last theorem can be transferred to a non-trivial
rational point on 𝑋0 (𝑝), by chasing it through the following diagram of maps of curves:

𝐹𝑝

𝜋1

  

𝑋 (2𝑝)

𝜋2
||

// 𝑋0 (𝑝)

P1

Thanks to the implication

𝐹𝑝 has a non-trivial rational point ⇒ 𝑋0 (𝑝) has a non-trivial rational point, (6.2)

(which is reminiscent of (6.1), is even closer in spirit to its converse, and is considerably
deeper than either statement), a Diophantine question about the Fermat curves 𝐹𝑝 is reduced
to the same question about the modular curves 𝑋0 (𝑝): precisely the question that is answered
in Mazur’s Theorem 5.1.

As will be further explained in Section 10, the ideas that Mazur introduced to prove
Theorem 5.1 are also instrumental in the the proof of (6.2): they are thus woven into the very
fabric of Wiles’ extraordinary proof of the Taniyama-Weil conjecture and of Fermat’s last
theorem.

7. Iwasawa Main conjectures
(References: [45], [47], [51].)
The proof of the main conjecture of Iwasawa theory by Mazur and Wiles [47] is

another milestone of number theory, occurring roughly a decade before the proof of Fer-
mat’s last theorem. Iwasawa theory starts with the fact that the 𝑝-parts of the ideal class
groups of the 𝑝-power cyclotomic fields, obtained by adjoining toQ the 𝑝𝑛-th roots of unity,
exhibit a remarkably regular growth as a function of 𝑛. The main conjecture of Iwasawa the-
ory ties this behaviour to the zeroes of the Kubota-Leopoldt 𝑝-adic zeta-function. It grew
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out of an analogy with Weil’s formulation of the Riemann hypothesis for varieties over finite
fields, and can be envisaged as its counterpart in a 𝑝-adic setting, insofar as it assigns to the
mysterious zeroes of the 𝑝-adic zeta function a spectral interpretation. Namely these zeroes
are the eigenvalues of a certain operator – a topological generator of the Galois group of
the cyclotomic Z𝑝-extension generated by all 𝑝-power roots of unity – acting on an Iwa-
sawa module formed by piecing together the ideal class groups of the finite layers of this
Z𝑝-extension. A remarkable feature of the proof of Mazur and Wiles is that it rests on a
careful study of the two-dimensional Galois representations arising from the quotients of the
jacobians of modular curves, particularly those that are reducible, to prove a statement that
is ostensibly part of the more classical abelian theory of class groups of cyclotomic fields.
Global class field theory is used to convert questions about class groups into ones about
constructing unramified abelian extensions of cyclotomic fields, and the extensions that are
predicted to arise from the zeroes of the 𝑝-adic zeta function are ultimately shown to be cut
out by the Galois representations arising from the 𝑝-power torsion points of these modular
jacobians.

The proof of the Iwasawa Main conjecture — justifying the analogy between the 𝑝-
adic zeta function of Kubota-Leopoldt and the Alexander polynomial of a knot which Mazur
had perceived decades earlier — stands as one of the notable achievements in number theory
in the latter half of the 20th century. Its method has been vastly generalised, notably by Wiles
for totally real fields [147], and by Chris Skinner and Eric Urban [144] in the setting of elliptic
curves, a framework which also owes much to Mazur’s vision and will be discussed in the
following section.

8. Elliptic curves and the Birch and Swinnerton-Dyer conjecture
(References: [40] — [44], [46], [48], [50], [52], [56], [58], [101].)
Throughout the 1970’s and 1980’s, Mazur reflected extensively on the arithmetic

of elliptic curves, focusing on the most notoriously difficult and central open problem in the
area: the Birch and Swinnerton-Dyer conjecture. Rather than tackling the problem head-on,
he initiated a parallel study in the 𝑝-adic setting, opening up a new terrain of investigation
which has been remarkably fruitful and witnessed decades of sustained progress.

The article [41] champions the introduction of Iwasawa-theoretic ideas in the arith-
metic study of elliptic curves and abelian varieties. The relevant Iwasawa modules are
obtained by replacing the 𝑝-parts of ideal class groups with relevant 𝑝-Selmer groups over
the finite layers of a Z𝑝-extension, appropriately pieced together. The importance of this new
perspective can hardly be overstated: entire mathematical careers (the author’s among them)
have been enjoyably spent fleshing out Mazur’s vision for the Iwasawa theory of abelian
varieties over towers of number fields.

Mazur’s article [42] with Peter Swinnerton-Dyer introduces what has since come
to be known as the Mazur–Swinnerton-Dyer 𝑝-adic 𝐿-function of an elliptic curve over Q,
the direct counterpart of the Hasse-Weil 𝐿-function in the 𝑝-adic world. Relating analytically
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defined 𝑝-adic 𝐿-functions like this one to the characteristic power series of Mazur’s Iwasawa
modules leads to a rich variety of “Iwasawa main conjectures" for elliptic curves.

The foundations that are laid in [41] and [42] lead naturally to a 𝑝-adic analogue of
the Birch and Swinnerton-Dyer conjecture, which was formulated roughly ten years later in
a profoundly influential article [50] by Mazur, Tate and Teitelbaum.

The 𝑝-adic Birch and Swinnerton Dyer conjecture is more tractable than its archimedean
precursor, because of the tight connection one can hope to establish between 𝑝-adic 𝐿-
functions and Mazur’s Iwasawa modules, as expressed in the main conjecture. The main
conjecture explains why elliptic curves of large rank, for example, ought to exhibit high
order zeroes in their associated 𝑝-adic 𝐿-functions: it is because the Mordell-Weil group
provides a subspace of the relevant Iwasawa module that is fixed by Galois and thus con-
tributes to the multiplicity of the trivial character as a zero of the 𝑝-adic 𝐿-function.

Such a spectral interpretation is sorely lacking for the zeroes of the Hasse Weil 𝐿-
function in the archimedean setting, and indeed there is not a single elliptic curve over Q
whose 𝐿-series can be shown to vanish to order > 3 at 𝑠 = 1, although elliptic curves of rank
> 3 (and even > 23) are known to exist in relative abundance.

In the non-archimedean framework that Mazur pioneered, the situation is better
understood. The requisite divisibility in the main conjecture for elliptic curves over Q was
shown by Kazuya Kato in the early 1990’s by exploiting, much as Kolyvagin with Heeg-
ner points, special elements in the 𝐾-theory of modular curves arising from pairs of Siegel
units and (crucially) their 𝑝-adic deformations [131]. Thanks to Kato’s result, the Mazur–
Swinnerton-Dyer 𝑝-adic 𝐿-function of an elliptic curve is known to vanish to order at least
the rank of the Mordell-Weil group.

The opposite divisibility in the main conjecture for elliptic curves was established by
Skinner and Urban [144], by building on the very different circle of ideas that arose in the proof
of the original Iwasawa main conjecture by Mazur and Wiles. Significant mysteries relating to
the finiteness of the Shafarevich-Tate group and non-degeneracies in 𝑝-adic heights (and the
eventual non-semisimplicity of the relevant Iwasawa modules) still prevent this divisibility
in the main conjecture from leading to the correct upper bound on the order of vanishing of
the 𝑝-adic 𝐿-function. So the 𝑝-adic Birch and Swinnerton-Dyer conjecture of Mazur, Tate
and Teitelbaum still offers alluring mysteries in spite of its relative accessibility compared to
the original archimedean conjecture.

Another appealing feature of the 𝑝-adic Birch and Swinnerton-Dyer conjecture
is the appearance of new phenomena that seem to have no immediate counterpart in the
archimedean setting, most notably, the phenomenon of exceptional zeroes of 𝑝-adic 𝐿-
functions that can arise, for instance, from the vanishing of an Euler factor at 𝑝 that needs
to be inserted to ensure the interpolation of the special values.This phenomenon was first
observed and explored in [50]. While they may appear somewhat specialised to the uniniti-
ated, leading terms of 𝑝-adic 𝐿-functions at points where there is an exceptional zero encode
rich arithmetic information, and their careful examination is often rewarded with fruitful
new insights. The original “exceptional zero conjecture" of Mazur, Tate and Teitelbaum
involved the Tate 𝑝-adic period of an elliptic curve with multiplicative reduction. A series
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of suggestive proposals have been formulated to extend this conjecture to modular forms of
higher weight, notably by Jeremy Teitelbaum [145] in terms of the Cerednik-Drinfeld theory
of 𝑝-adic uniformisation of Shimura curves, and by Fontaine and Mazur [67], exploiting
the filtered frobenius monodromy module which 𝑝-adic Hodge theory attaches to the local
𝑝-adic Galois representation of a modular form of higher weight. As a further instance of
the importance of exceptional zeros, let us mention that they also sometimes arise in 𝑝-adic
𝐿-series attached to totally odd characters of totally real fields at 𝑠 = 0, where they are central
to Gross’s 𝑝-adic variant of the Stark conjectures.

Towards the end of the 1980’s, Mazur also introduced, in collaboration with John
Tate, a tame refinement of the 𝑝-adic Birch and Swinnerton-Dyer conjecture which consists,
roughly speaking, in replacing the Iwasawa algebra – the completed group ring of the Galois
group of a Z𝑝 extension – by the group ring of the Galois group of a finite abelian extension
[52]. The more refined conjectures that emerge from the tame framework turn out to offer a
congenial setting in which to study and organise the behaviour of Euler systems, and these
ideas have undergone something of a recent revival, notably through their connections with
conjectures of Harris and Venkatesh concerning Venkatesh’s “derived Hecke operators" act-
ing on the cohomology of coherent sheaves on modular curves attached to modular forms of
weight one [129].

9. The Fontaine-Mazur conjecture
Like many of the great number theorists of the 20th century, Mazur has contributed

significantly to the study of Galois representations and their connection with automorphic
forms. These ideas are central to a number of the achievements of Mazur that have already
been recounted.

One of Mazur’s important contributions in this direction is the deep conjecture,
formulated in [71] with Jean-Marc Fontaine, which has widely come to be known as the
Fontaine-Mazur conjecture. It aims to characterise the global 𝑝-adic Galois representations
that arise from the 𝑝-adic étale cohomology of varieties over number fields. The characteri-
sation is via their restriction to the decomposition group at 𝑝 (one demands that these 𝑝-adic
representations of the Galois groups of 𝑝-adic fields be potentially semistable, a notion based
on comparison functors between 𝑝-adic étale cohomology over 𝑝-adic fields and the 𝑝-adic
cohomologies studied by Mazur in earlier decades) combined with a natural requirement of
otherwise being ramified at finitely many primes other than 𝑝. This conjecture provides an
elegant framework in which much of the recent progress on the Langlands program can be
understood and conceptualised.
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10. Deformations of Galois representations
(References: [53], [54], [61], [73], [75], [76], [78], [108].)
The 𝑝-adic variation of modular forms and Galois representations is a theme that

underlies much of Mazur’s work in number theory, starting with his early work on the Eisen-
stein ideal. His fundamental article [53] formalizes this notion on the Galois theory side by
introducing the universal deformation ring attached to a Galois representation with coef-
ficients in a complete local ring. With this idea, Mazur launched the new field of Galois
deformation theory, which almost immediately after its inception found a spectacular appli-
cation in Wiles’ proof of the Taniyama-Weil conjecture. This proof proceeds by constructing
a natural map from one of Mazur’s universal Galois deformation rings to a suitably com-
pleted ring of Hecke operators, and showing this map is an isomorphism. The deep study of
the ring theoretic structure of completed Hecke algebras had already been initiated, more than
a decade earlier, in Mazur’s work on the Eisenstein ideal. With the introduction of universal
deformation rings, Mazur can be credited for a substantial part of the theoretical infrastruc-
ture that enabled the proof of the Taniyama-Weil conjecture. Mazur’s ideas are thus present
in the very foundations of the remarkably successful strategy for establishing the modularity
of Galois representations that has been extensively developed and generalized in the wake of
Wiles’ breakthrough on the modularity of elliptic curves.

Mazur’s subsequent work [73], [78] with Robert Coleman represents an attempt to
partially globalise the study of deformation spaces of Galois representations, leading to the
fundamental notion of Coleman-Mazur “eigencurves" and “eigenvarieties". The framework
initiated by Coleman and Mazur in these foundational papers has been extensively developed
in the past decades, spawning a fruitful area that underlies much of the recent progress in the
Langlands program via 𝑝-adic methods.

11. Diophantine geometry
(References: [49], [62], [68], [70], [72], [79], [86], [95], [100].)
Mazur’s work on diophantine geometry distinguishes itself by insights that are often

stunning in their audacity. The article [62] ventures the striking conjecture that if the rational
points of a variety 𝑉 are Zariski dense, then their topological closure in 𝑉 (R) for the real
topology is a union of connected components of 𝑉 (R).

Just as far reaching are the celebrated conjectures Mazur formulated with Lucia
Caporaso and Joe Harris [70], [72], asserting that the number of rational points on a curve of
genus 𝑔 over a number field 𝐾 is uniformly bounded by a constant that depends only on 𝑔
and 𝐾 , and even just on 𝑔 if one tolerates a finite number of exceptions. In [70] it is shown
that this conjecture, which is both remarkably strong and pleasingly concrete, follows from
the earlier, and at the time more widely accepted, conjecture of Lang that the set of rational
points on a variety of general type can never be Zariski dense.
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Such fearless conjectures, applying to all varieties at once or to the number of points
on all curves of given genus, shine an unexpected light on venerable questions about rational
points and have guided a lot of subsequent efforts by other researchers.

Many of Mazur’s articles devoted to diophantine topics reveal unexpected connec-
tions to other mathematical themes. This is the case, notably, for [109] and [114], which study
the variation in 2-Selmer ranks of elliptic curves over number fields, revealing a surpris-
ing connection between the notion of “Diophantine stability" and Hilbert’s tenth problem
concerning the undecidability of diophantine questions over certain number fields.

12. Euler systems and related areas
(References. [92] [99], [104], [106], [110], [115], [117], [118], [119], [120].)
The method of Euler systems is a powerful technique that emerged in the late 1980’s

from the works of mathematicians like Francisco Thaine, Karl Rubin, Victor Kolyvagin, and
Kazuya Kato. It parlays the presence of special elements in the global Galois cohomology of
(a compatible system of) 𝑝-adic Galois representations into a proof of at least one inequality
in the associated main conjecture. The existence of the global elements making up an Euler
system is still poorly understood, and their construction remains as much an art as a science.

The articles [92] [99], [104], [110], [119], and [120], all joint with Karl Rubin, are part
of a systematic attempt to formalise (via the notion of what the authors call a “Kolyvagin
system") the procedure whereby such norm-compatible collections of global classes with
ties to 𝐿-function behaviour can be exploited to obtain results in the direction of a main
conjecture, or possibly a tame counterpart in the spirit of [52]. The perspectives introduced
by Mazur and Rubin have had a decisive influence on an entire generation of researchers who
are currently exploring the ramifications of the Euler system method.

13. Exposition
(References. [59], [63], [75], [83], [87], [89], [93], [97], [105], [107], [112], [113], [116], [121],

[124], [126].)
Mazur is a master expositor who revels in the joy of mathematical and philosophical

ideas. He is the author of a fascinating, eclectic collection of essays in which his erudition
and intellectual curiosity range far and wide. Some of these essays are devoted to broad
mathematical topics like local-global principles in number theory [63], the deformation theory
of Galois representations [75], diophantine questions related to perfect powers [83], the general
idea of deformation in various parts of mathematics [93], the notion of a motive [97], the Sato-
Tate conjecture [105], and the Riemann hypothesis [121]. Others examine ideas through the
lense of their historical development, treating complex numbers as they were envisioned in the
16th Century [87], or Hermann Weyl’s foundational article on spectral theory [112]. Mazur also
ventures into more philosophical topics like dreams in mathematics told through an evocation
of Kronecker’s Jugendtraum [113], the concept of number and mathematical abstraction [89],
the subtle and elusive concept of equality in mathematics [107], the notion of plausiblity [116],
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the overarching unity of mathematics [124], and thoughts on doing mathematics during the
pandemic [126]. Mazur’s infectious enthusiasm easily transmits itself to the reader, and his
reflections on a diverse range of mathematical, historical and philosophical subjects never
fail to delight, uplift, and enlighten. (The range and depth of Mazur’s intellectual interests
are vividly evoked in the engaging documentary movie “Barry Mazur and the infinite cheese
of knowledge" directed by Oliver Ralfe [140].)

14. Mentorship
According to the Mathematics genealogy website, Mazur has had (at least) 57 stu-

dents and 325 descendants, figures that are bound to be obsolete by the time this laudatio
goes to press. Beyond the direct impact he has had on his students, Mazur has shaped the
views of an entire generation of number theorists who have been enriched by his ideas and
enjoyed the privilege of pursuing his capacious intellectual legacy. This legacy, which is now
being recognised through the awarding of the Chern medal, is a central and integral part of
modern number theory and its influence will be felt for a very long time.

References
[1] B. Mazur. The definition of equivalence of combinatorial imbeddings. Inst.

Hautes Etudes Sci. Publ. Math. 1959 (1959), 97–109.
[2] B. Mazur, On the structure of certain semi-groups of spherical knot classes. Inst.

Hautes Etudes Sci. Publ. Math. 1959 (1959), 111–119.
[3] B. Mazur, Orthotopy and spherical knots. Inst. Hautes Etudes Sci. Publ. Math.

1959 (1959), 121–140.
[4] B. Mazur, On embeddings of spheres. Ph.D. thesis Princeton University, 1959.
[5] B. Mazur, On embeddings of spheres. Bull. Amer. Math. Soc. 65 (1959), 59–65.
[6] B. Mazur, On embeddings of spheres. Acta Math. 105 (1961), 1–17.
[7] B. Mazur, A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961),

221–228.
[8] B. Mazur, Stable equivalence of differentiable manifolds. Bull. Amer. Math. Soc.

67 (1961), 377–384.
[9] B. Mazur, Simple neighborhoods. Bull. Amer. Math. Soc. 68 (1962), 87–92.
[10] B. Mazur, Symmetric homology spheres. Illinois J. Math. 6 (1962), 245–250.
[11] B. Mazur, Relative neighborhoods and the theorems of Smale. Ann. of Math. (2)

77 (1963), 232–249.
[12] B. Mazur, Differential topology from the point of view of simple homotopy

theory. Inst. Hautes Etudes Sci. Publ. Math. No. 15 (1963), 93 pp.
[13] B. Mazur, The method of infinite repetition in pure topology. I. Ann. of Math. (2)

80 (1964), 201–226.
[14] B. Mazur, Combinatorial equivalence versus topological equivalence. Trans.

Amer. Math. Soc. 111 (1964), 288–316.

16 H. Darmon



[15] M. Artin and B. Mazur, On periodic points. Ann. of Math. (2) 81 (1965), 82–99.
[16] B. Mazur, Morse theory. 1965 Differential and Combinatorial Topology (A

Symposium in Honor of Marston Morse) pp. 145–165, Princeton Univ. Press,
Princeton, N.J.

[17] M. Artin and B. Mazur, On the van Kampen theorem. Topology 5 (1966), 179–
189.

[18] B. Mazur, The method of infinite repetition in pure topology. II. Stable applica-
tions. Ann. of Math. (2) 83 (1966), 387–401.

[19] M.W. Hirsch and B. Mazur, Smoothings of piecewise linear manifolds. Annals of
Mathematics Studies, No. 80. Princeton University Press, Princeton, N. J.; Univer-
sity of Tokyo Press, Tokyo, 1974.

[20] B. Mazur, Frobenius and the Hodge filtration. Bull. Amer. Math. Soc. 78 (1972),
653–667.

[21] B. Mazur, Frobenius and the Hodge filtration (estimates). Ann. of Math. (2) 98
(1973), 58–95.

[22] B. Mazur and W. Messing, Universal extensions and one dimensional crystalline
cohomology. Lecture Notes in Mathematics, Vol. 370. Springer-Verlag, Berlin-
New York, 1974.

[23] B. Mazur, Eigenvalues of Frobenius acting on algebraic varieties over finite fields.
in Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ.,
Arcata, Calif., 1974), pp. 231–261. Amer. Math. Soc., Providence, R.I., 1975.

[24] M. Artin and B. Mazur, Formal groups arising from algebraic varieties. Ann. Sci.
Ecole Norm. Sup. (4) 10 (1977), no. 1, 87–131.

[25] M. Artin and B. Mazur, Homotopy of varieties in the etale topology. in 1967
Proc. Conf. Local Fields (Driebergen, 1966) pp. 1–15 Springer, Berlin.

[26] B. Mazur and L. Roberts, Local Euler characteristics. Invent. Math. 9 (1969/70),
201–234.

[27] B. Mazur, Finite flat structures. in 1970 Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) pp. 219–225 Amer.
Math. Soc., Providence, R.I.

[28] M. Artin and B. Mazur, Etale homotopy. Reprint of the 1969 original. Lecture
Notes in Mathematics, 100. Springer-Verlag, Berlin, 1986.

[29] B. Mazur, Local flat duality. Amer. J. Math. 92 (1970), 343–361.
[30] B. Mazur. Remarks on the Alexander Polynomial. Unpublished. Available at

https://people.math.harvard.edu/ mazur/papers/alexander_polynomial.pdf.
[31] B. Mazur, Notes on étale cohomology of number fields. Ann. Sci. École Norm.

Sup. (4) 6 (1973), 521–552 (1974).
[32] B. Mazur and J. Vélu, Courbes de Weil de conducteur 26. C. R. Acad. Sci. Paris

Sér. A-B 275 (1972), A743–A745.
[33] B. Mazur and J. Tate, Points of order 13 on elliptic curves. Invent. Math. 22

(1973/74), 41–49.

17 Barry Mazur



[34] B. Mazur and J.-P. Serre, Points rationnels des courbes modulaires 𝑋0 (𝑁)
(d’après A. Ogg). Séminaire Bourbaki (1974/1975), Exp. No. 469, pp. 238–
255. Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976.

[35] B. Mazur, Rational points on modular curves. Modular functions of one variable,
V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 107–148. Lecture
Notes in Math., Vol. 601, Springer, Berlin, 1977.

[36] B. Mazur, Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ.
Math. No. 47 (1977), 33–186 (1978).

[37] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), no. 2,
129–162.

[38] S. Kamienny and B. Mazur, Rational torsion of prime order in elliptic curves over
number fields. Columbia University Number Theory Seminar (New York, 1992).
Astérisque No. 228 (1995), 3, 81–100.

[39] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathe-
matics Studies, 108. Princeton University Press, Princeton, NJ, 1985.

[40] B. Mazur, Courbes elliptiques et symboles modulaires. in Séminaire Bourbaki,
24ème année (1971/1972), Exp. No. 414, pp. 277–294. Lecture Notes in Math.,
Vol. 317, Springer, Berlin, 1973.

[41] B. Mazur, Rational points of abelian varieties with values in towers of number
fields. Invent. Math. 18 (1972), 183–266.

[42] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25
(1974), 1–61.

[43] B. Mazur, 𝑝-adic analytic number theory of elliptic curves and Abelian varieties
over Q. Proceedings of the International Congress of Mathematicians (Vancouver,
B. C., 1974), Vol. 1, pp. 369–377.

[44] B. Mazur, On the arithmetic of special values of 𝐿-functions. Invent. Math. 55
(1979), no. 3, 207–240.

[45] B. Mazur and A. Wiles, Analogies between function fields and number fields.
Amer. J. Math. 105 (1983), no. 2, 507–521.

[46] B. Mazur and J. Tate, Canonical height pairings via biextensions. Arithmetic and
geometry, Vol. I, 195–237, Progr. Math., 35, Birkhäuser Boston, Boston, MA,
1983.

[47] B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76
(1984), no. 2, 179–330.

[48] B. Mazur, Modular curves and arithmetic. Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 185–211, PWN, Warsaw,
1984.

[49] B. Mazur, Arithmetic on curves. Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2,
207–259.

[50] B. Mazur, J. Tate, and J. Teitelbaum, On 𝑝-adic analogues of the conjectures of
Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), no. 1, 1–48.

18 H. Darmon



[51] B. Mazur and A. Wiles, On p-adic analytic families of Galois representations.
Compositio Math. 59 (1986), no. 2, 231–264.

[52] B. Mazur and J. Tate, Refined conjectures of the "Birch and Swinnerton-Dyer
type”. Duke Math. J. 54 (1987), no. 2, 711–750.

[53] B. Mazur, Deforming Galois representations. in Galois groups over Q, 385–437,
Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.

[54] N. Boston and B. Mazur, Explicit universal deformations of Galois representa-
tions. in Algebraic number theory, 1–21, Adv. Stud. Pure Math., 17, Academic
Press, Boston, MA, 1989.

[55] B. Mazur, Two-dimensional 𝑝-adic Galois representations unramified away from
𝑝. Compositio Math. 74 (1990), no. 2, 115–133.

[56] B. Mazur and J. Tilouine, Représentations galoisiennes, différentielles de Kähler
et "conjectures principales”. Inst. Hautes Etudes Sci. Publ. Math. 71 (1990), 65–
103.

[57] F. Gouvêa and B. Mazur, The square-free sieve and the rank of elliptic curves. J.
Amer. Math. Soc. 4 (1991), no. 1, 1–23.

[58] B. Mazur and J. Tate, The 𝑝-adic sigma function. Duke Math. J. 62 (1991), no. 3,
663–688.

[59] B. Mazur, Number theory as gadfly. Amer. Math. Monthly 98 (1991), no. 7, 593–
610.

[60] B. Mazur and K. Ribet, Two-dimensional representations in the arithmetic
of modular curves. in Courbes modulaires et courbes de Shimura (Orsay,
1987/1988). Astérisque No. 196-197 (1991), 6, 215–255 (1992).

[61] F. Gouvêa and B. Mazur, Families of modular eigenforms. Math. Comp. 58
(1992), no. 198, 793–805.

[62] B. Mazur, The topology of rational points. Experiment. Math. 1 (1992), no. 1,
35–45.

[63] B. Mazur, On the passage from local to global in number theory. Bull. Amer.
Math. Soc. (N.S.) 29 (1993), no. 1, 14–50.

[64] F.Q. Gouvêa and B. Mazur, On the characteristic power series of the𝑈 operator.
Ann. Inst. Fourier (Grenoble) 43 (1993), no. 2, 301–312.

[65] E.M. Friedlander and B. Mazur, Filtrations on the homology of algebraic vari-
eties. With an appendix by Daniel Quillen. Mem. Amer. Math. Soc. 110 (1994),
no. 529.

[66] B. Mazur, Questions of decidability and undecidability in number theory. J. Sym-
bolic Logic 59 (1994), no. 2, 353–371.

[67] B. Mazur, On monodromy invariants occurring in global arithmetic, and Fontaine’s
theory. in 𝑝-adic monodromy and the Birch and Swinnerton-Dyer conjecture
(Boston, MA, 1991), 1–20, Contemp. Math., 165, Amer. Math. Soc., Providence,
RI, 1994.

19 Barry Mazur



[68] B. Mazur, Speculations about the topology of rational points: an update. Columbia
University Number Theory Seminar (New York, 1992). Astérisque No. 228
(1995), 4, 165–182.

[69] F.Q. Gouvêa and B. Mazur, Searching for 𝑝-adic eigenfunctions. Math. Res. Lett.
2 (1995), no. 5, 515–536.

[70] L. Caporaso, J. Harris, and B. Mazur, How many rational points can a curve
have? The moduli space of curves (Texel Island, 1994), 13–31, Progr. Math., 129,
Birkhäuser Boston, Boston, MA, 1995.

[71] J.-M. Fontaine and B. Mazur, Geometric Galois representations. in Elliptic curves,
modular forms, & Fermat’s last theorem, (Hong Kong, 1993), 41–78, Ser. Number
Theory, I, Int. Press, Cambridge, MA, 1995.

[72] L. Caporaso,J. Harris, and B. Mazur, Uniformity of rational points. J. Amer. Math.
Soc. 10 (1997), no. 1, 1–35.

[73] B. Mazur, An "infinite fern” in the universal deformation space of Galois repre-
sentations. Journées Arithmétiques (Barcelona, 1995). Collect. Math. 48 (1997),
no. 1-2, 151–193.

[74] D. Eisenbud and B. Mazur, Evolutions, symbolic squares, and Fitting ideals. J.
Reine Angew. Math. 488 (1997), 189–201.

[75] B. Mazur, An introduction to the deformation theory of Galois representations.
in Modular forms and Fermat’s last theorem (Boston, MA, 1995), 243–311,
Springer, New York, 1997.

[76] F.. Gouvêa and B. Mazur, On the density of modular representations. in Compu-
tational perspectives on number theory (Chicago, IL, 1995), 127–142, AMS/IP
Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.

[77] J. Harris, B. Mazur, and R. Pandharipande, Hypersurfaces of low degree. Duke
Math. J. 95 (1998), no. 1, 125–160.

[78] R. Coleman and B. Mazur, The eigencurve. in Galois representations in arith-
metic algebraic geometry (Durham, 1996), 1–113, London Math. Soc. Lecture
Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998.

[79] B. Mazur, Open problems regarding rational points on curves and varieties. in
Galois representations in arithmetic algebraic geometry, (Durham, 1996), 239–
265, London Math. Soc. Lecture Note Ser., 254, Cambridge Univ. Press, Cam-
bridge, 1998.

[80] B. Mazur, Open problems in number theory. in Current developments in mathe-
matics, 1997 (Cambridge, MA), 199–203, Int. Press, Boston, MA, 1999.

[81] B. Mazur, Visualizing elements of order three in the Shafarevich-Tate group.
in Sir Michael Atiyah: a great mathematician of the twentieth century. Asian J.
Math. 3 (1999), no. 1, 221–232.

[82] D. Kazhdan, B. Mazur, and C.-G. Schmidt, Relative modular symbols and
Rankin-Selberg convolutions. J. Reine Angew. Math. 519 (2000), 97–141.

[83] B. Mazur, Questions about powers of numbers. Notices Amer. Math. Soc. 47
(2000), no. 2, 195–202.

20 H. Darmon



[84] B. Mazur, The theme of 𝑝-adic variation. in Mathematics: frontiers and perspec-
tives, 433–459, Amer. Math. Soc., Providence, RI, 2000.

[85] J. E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group.
Experiment. Math. 9 (2000), no. 1, 13–28.

[86] B. Mazur, Abelian varieties and the Mordell-Lang conjecture. in Model theory,
algebra, and geometry, 199–227, Math. Sci. Res. Inst. Publ., 39, Cambridge Univ.
Press, Cambridge, 2000.

[87] F. La Nave and B. Mazur, Reading Bombelli. Math. Intelligencer 24 (2002), no. 1,
12–21.

[88] B. Mazur and K. Rubin, Elliptic curves and class field theory. Proceedings of
the International Congress of Mathematicians, Vol. II (Beĳing, 2002), 185–195,
Higher Ed. Press, Beĳing, 2002.

[89] B. Mazur, Imagining numbers. Particularly the square root of minus fifteen.
Farrar, Straus and Giroux, New York, 2003.

[90] B. Mazur and K. Rubin, Studying the growth of Mordell-Weil. in Kazuya Kato’s
fiftieth birthday. Doc. Math. 2003, Extra Vol., 585–607.

[91] T. Graber, J. Harris, B. Mazur, and J. Starr, Jumps in Mordell-Weil rank and arith-
metic surjectivity. in Arithmetic of higher-dimensional algebraic varieties (Palo
Alto, CA, 2002), 141–147, Progr. Math., 226, Birkhäuser Boston, Boston, MA,
2004.

[92] B. Mazur and K. Rubin, Kolyvagin systems. Mem. Amer. Math. Soc. 168 (2004)
[93] B. Mazur, Perturbations, deformations, and variations (and "near-misses”) in

geometry, physics, and number theory. Bull. Amer. Math. Soc. (N.S.) 41 (2004),
no. 3, 307–336.

[94] B. Mazur and K. Rubin, Pairings in the arithmetic of elliptic curves. in Modular
curves and abelian varieties, 151–163, Progr. Math., 224, Birkhäuser, Basel,
2004.

[95] T. Graber, J. Harris, B. Mazur, and J. Starr, Arithmetic questions related to ratio-
nally connected varieties. in The legacy of Niels Henrik Abel, 531–542, Springer,
Berlin, 2004.

[96] B. Mazur and K. Rubin, Introduction to Kolyvagin systems. in Stark’s conjec-
tures: recent work and new directions, 207–221, Contemp. Math., 358, Amer.
Math. Soc., Providence, RI, 2004.

[97] B. Mazur, What is . . . a motive? Notices Amer. Math. Soc. 51 (2004), no. 10,
1214–1216.

[98] B. Mazur, and K. Rubin, Organizing the arithmetic of elliptic curves. Adv. Math.
198 (2005), no. 2, 504–546.

[99] B. Mazur and K. Rubin, Finding large Selmer groups. J. Differential Geom. 70
(2005), no. 1, 1–22.

[100] T. Graber, J. Harris, B. Mazur, and J. Starr, Rational connectivity and sections of
families over curves. Ann. Sci. Ecole Norm. Sup. (4) 38 (2005), no. 5, 671–692.

21 Barry Mazur



[101] B. Mazur, W. Stein, and J. Tate, Computation of 𝑝-adic heights and log conver-
gence. Doc. Math. 2006, Extra Vol., 577–614.

[102] B. Bektemirov, B. Mazur, W. Stein, and M. Watkins, Average ranks of elliptic
curves: tension between data and conjecture. Bull. Amer. Math. Soc. (N.S.) 44
(2007), no. 2, 233–254.

[103] B. Mazur, K. Rubin, K, and A. Silverberg, Twisting commutative algebraic
groups. J. Algebra 314 (2007), no. 1, 419–438.

[104] B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory of
local constants. Ann. of Math. (2) 166 (2007), no. 2, 579–612.

[105] B. Mazur, Finding meaning in error terms. Bull. Amer. Math. Soc. (N.S.) 45
(2008), no. 2, 185–228.

[106] B. Mazur and K. Rubin, Growth of Selmer rank in nonabelian extensions of
number fields. Duke Math. J. 143 (2008), no. 3, 437–461.

[107] B. Mazur, When is one thing equal to some other thing? in Proof and other
dilemmas, 221–241, MAA Spectrum, Math. Assoc. America, Washington, DC,
2008.

[108] F. Calegari and B. Mazur, Nearly ordinary Galois deformations over arbitrary
number fields. J. Inst. Math. Jussieu 8 (2009), no. 1, 99–177.

[109] B. Mazur and K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth
problem. Invent. Math. 181 (2010), no. 3, 541–575.

[110] B. Mazur and K. Rubin, Refined class number formulas and Kolyvagin systems.
Compos. Math. 147 (2011), no. 1, 56–74.

[111] B. Mazur, How can we construct abelian Galois extensions of basic number
fields? Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 2, 155–209.

[112] B. Mazur, About Hermann Weyl’s "Ramifications, old and new, of the eigenvalue
problem”, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 325–326.

[113] B. Mazur, Visions, dreams, and mathematics. in Circles disturbed, 183–210,
Princeton Univ. Press, Princeton, NJ, 2012.

[114] Z. Klagsbrun, B. Mazur, K. Rubin, Disparity in Selmer ranks of quadratic twists
of elliptic curves. Ann. of Math. (2) 178 (2013), no. 1, 287–320.

[115] J.B. Friedlander, H. Iwaniec, B. Mazur, and K. Rubin, The spin of prime ideals.
Invent. Math. 193 (2013), no. 3, 697–749.

[116] B. Mazur, Is it plausible? Math. Intelligencer 36 (2014), no. 1, 24–33.
[117] Z. Klagsbrun, B. Mazur, and K. Rubin, A Markov model for Selmer ranks in fami-

lies of twists. Compos. Math. 150 (2014), no. 7, 1077–1106.
[118] B. Mazur and K. Rubin, Selmer companion curves. Trans. Amer. Math. Soc. 367

(2015), no. 1, 401–421.
[119] B. Mazur and K. Rubin, Controlling Selmer groups in the higher core rank case.

J. Théor. Nombres Bordeaux 28 (2016), no. 1, 145–183.
[120] B. Mazur and K. Rubin, Refined class number formulas for 𝐺𝑚, J. Théor. Nom-

bres Bordeaux 28 (2016), no. 1, 185–211.

22 H. Darmon



[121] B. Mazur, W. Stein, Prime numbers and the Riemann hypothesis. Cambridge Uni-
versity Press, Cambridge, 2016. xi+142 pp.

[122] M. Derickx, B. Mazur, and S. Kamienny, Rational families of 17-torsion points
of elliptic curves over number fields. in Number theory related to modular
curves—Momose memorial volume, 81–104, Contemp. Math., 701, Amer. Math.
Soc., 2018.

[123] B. Mazur and K. Rubin, Diophantine stability. Amer. J. Math. 140 (2018), no. 3,
571–616.

[124] B. Mazur, Grand unity. ICCM Not. 7 (2019), no. 1, 76.
[125] B. Mazur and K. Rubin, Big fields that are not large. Proc. Amer. Math. Soc. Ser.

B 7 (2020), 159–169.
[126] B. Mazur, Math in the time of plague. Math. Intelligencer 42 (2020), no. 4, 1–6.
[127] J. Balakrishnan, N. Dogra, J.S. Müller, J. Tuitman, and J. Vonk, Explicit Chabauty-

Kim for the split Cartan modular curve of level 13. Ann. of Math. (2) 189 (2019),
no. 3, 885–944.

[128] Y. Bilu, P. Parent, and M. Rebolledo, Rational points on 𝑋+0 (𝑝
𝑟 ). Ann. Inst.

Fourier (Grenoble) 63 (2013), no. 3, 957–984.
[129] M. Harris and A. Venkatesh, Derived Hecke algebra for weight one forms. Exp.

Math. 28 (2019), no. 3, 342–361.
[130] S. Kamienny, Torsion points on elliptic curves and 𝑞-coefficients of modular

forms. Invent. Math. 109 (1992), no. 2, 221–229.
[131] K. Kato, 𝑝-adic Hodge theory and values of zeta functions of modular forms.

Cohomologies 𝑝-adiques et applications arithmétiques. III. Astérisque No. 295
(2004), ix, 117–290.

[132] N.M. Katz, Slope filtration of F-crystals. Journées de Géométrie Algébrique de
Rennes Vol. I, pp. 113–163, Astérisque, 63, Soc. Math. France, Paris, 1979.

[133] M.A. Kenku, Rational torsion points on elliptic curves defined over quadratic
fields. J. Nigerian Math. Soc. 2 (1983), 1–16.

[134] M.A. Kenku and F. Momose. Torsion points on elliptic curves defined over
quadratic fields. Nagoya Math. J. 109 (1988), 125–149.

[135] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres.
Invent. Math. 124 (1996), no. 1–3, 437–449.

[136] F. Momose, Rational points on the modular curves 𝑋split (𝑝). Compositio Math. 52
(1984), no. 1, 115–137.

[137] F. Momose, Rational points on the modular curves 𝑋+0 (𝑝
𝑟 ). J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 33 (1986), no. 3, 441–466.
[138] M. Morishita, Knots and primes. An introduction to arithmetic topology. Univer-

sitext. Springer, London, 2012. 191 pp.
[139] A.P. Ogg, Rational points of finite order on elliptic curves. Invent. Math. 12

(1971), 105–111.
[140] Oliver Ralfe, Barry Mazur and the infinite cheese of knowledge, Sheepstreet films.

23 Barry Mazur



[141] K.A. Ribet, On modular representations of Gal(Q̄/Q) arising from modular
forms. Invent. Math. 100 (1990), no. 2, 431–476.

[142] N. Schappacher and R. Schoof, Beppo Levi and the arithmetic of elliptic curves.
Math. Intelligencer 18 (1996), no. 1, 57–69.

[143] J.-P. Serre, Sur les représentations modulaires de degré 2 de GalQ̄/Q). Duke
Math. J. 54 (1987), no. 1, 179–230.

[144] C. Skinner and E. Urban, The Iwasawa main conjectures for 𝐺𝐿2 Invent. Math.
195 (2014), no. 1, 1–277.

[145] J. Teitelbaum, Values of 𝑝-adic 𝐿-functions and a 𝑝-adic Poisson kernel. Invent.
Math. 101 (1990), no. 2, 395–410.

[146] A. Venkatesh, Primes and Knots, Public Lecture, IAS, Princeton, video online at
https://www.youtube.com/watch?v=jvoYgNYKyk0

[147] A. Wiles, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131
(1990), no. 3, 493–540.

[148] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2)
141 (1995), no. 3, 443–551.

Henri Darmon
McGill University, Montreal, Canada, henri.darmon@mcgill.ca

24 H. Darmon

mailto:henri.darmon@mcgill.ca

	1. Geometric and differential topology 
	2. Algebraic geometry 
	3. Arithmetic topology
	4. Torsion subgroups of elliptic curves 
	5. Rational points on modular curves
	6. Fermat's Last Theorem
	7. Iwasawa Main conjectures
	8. Elliptic curves and the Birch and Swinnerton-Dyer conjecture
	9. The Fontaine-Mazur conjecture
	10. Deformations of Galois representations
	11. Diophantine geometry
	12. Euler systems and related areas
	13. Exposition
	14. Mentorship
	References

