
The Work of Manjul Bhargava

Manjul Bhargava’s work in number theory has had a profound influence
on the field. A mathematician of extraordinary creativity, he has a taste
for simple problems of timeless beauty, which he has solved by developing
elegant and powerful new methods that offer deep insights.

When he was a graduate student, Bhargava read the monumental Disqui-
sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss
(1777-1855). All mathematicians know of the Disquisitiones, but few have
actually read it, as its notation and computational nature make it difficult
for modern readers to follow. Bhargava nevertheless found the book to be
a wellspring of inspiration. Gauss was interested in binary quadratic forms,
which are polynomials ax2 +bxy+cy2, where a, b, and c are integers. In the
Disquisitiones, Gauss developed his ingenious composition law, which gives
a method for composing two binary quadratic forms to obtain a third one.
This law became, and remains, a central tool in algebraic number theory.
After wading through the 20 pages of Gauss’s calculations culminating in
the composition law, Bhargava knew there had to be a better way.

Then one day, while playing with a Rubik’s cube, he found it. Bhargava
thought about labeling each corner of a cube with a number and then slic-
ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally
forms a matrix. A simple calculation with these matrices resulted in a bi-
nary quadratic form. From the three ways of slicing the cube, three binary
quadratic forms emerged. Bhargava then calculated the discriminants of
these three forms. (The discriminant, familiar to some as the expression
“under the square root sign” in the quadratic formula, is a fundamental
quantity associated to a polynomial.) When he found the discriminants
were all the same, as they are in Gauss’s composition law, Bhargava real-
ized he had found a simple, visual way to obtain the law.

He also realized that he could expand his cube-labeling technique to other
polynomials of higher degree (the degree is the highest power appearing in
the polynomial; for example, x3 − x + 1 has degree 3). He then discovered
13 new composition laws for higher-degree polynomials. Up until this time,
mathematicians had looked upon Gauss’s composition law as a curiosity
that happened only with binary quadratic forms. Until Bhargava’s work, no
one realized that other composition laws existed for polynomials of higher
degree.

One of the reasons Gauss’s composition law is so important is that it
provides information about quadratic number fields. A number field is built
by extending the rational numbers to include non-rational roots of a poly-
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nomial; if the polynomial is quadratic, then one obtains a quadratic num-
ber field. The degree of the polynomial and its discriminant are two basic
quantities associated with the number field. Although number fields are
fundamental objects in algebraic number theory, some basic facts are un-
known, such as how many number fields there are for a fixed degree and
fixed discriminant. With his new composition laws in hand, Bhargava set
about using them to investigate number fields.

Implicit in Gauss’s work is a technique called the “geometry of numbers”;
the technique was more fully developed in a landmark 1896 work of Hermann
Minkowski (1864-1909). In the geometry of numbers, one imagines the plane,
or 3-dimensional space, as populated by a lattice that highlights points with
integer coordinates. If one has a quadratic polynomial, counting the number
of integer lattice points in a certain region of 3-dimensional space provides
information about the associated quadratic number field. In particular, one
can use the geometry of numbers to show that, for discriminant with absolute
value less than X, there are approximately X quadratic number fields. In the
1960s, a more refined geometry of numbers approach by Harold Davenport
(1907-1969) and Hans Heilbronn (1908-1975) resolved the case of degree 3
number fields. And then progress stopped. So a great deal of excitement
greeted Bhargava’s work in which he counted the number of degree 4 and
degree 5 number fields having bounded discriminant. These results use
his new composition laws, together with his systematic development of the
geometry of numbers, which greatly extended the reach and power of this
technique. The cases of degree bigger than 5 remain open, and Bhargava’s
composition laws will not resolve those. However, it is possible that those
cases could be attacked using analogues of his composition laws.

Recently, Bhargava and his collaborators have used his expansion of the
geometry of numbers to produce striking results about hyperelliptic curves.
At the heart of this area of research is the ancient question of when an
arithmetic calculation yields a square number. One answer Bhargava found
is strikingly simple to state: A typical polynomial of degree at least 5 with
rational coefficients never takes a square value. A hyperelliptic curve is the
graph of an equation of the form y2 = a polynomial with rational coefficients.
In the case where the polynomial has degree 3, the graph is called an elliptic
curve. Elliptic curves have especially appealing properties and have been
the subject of a great deal of research; they also played a prominent role in
Andrew Wiles’s celebrated proof of Fermat’s Last Theorem.

A key question about a hyperelliptic curve is how one can count the
number of points that have rational coordinates and that lie on the curve.
It turns out that the number of rational points is closely related to the
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degree of the curve. For curves of degree 1 and 2, there is an effective
way of finding all the rational points. For degree 5 and higher, a theorem of
Gerd Faltings (a 1986 Fields Medalist) says that there are only finitely many
rational points. The most mysterious cases are those of degree 3–namely,
the case of elliptic curves–and of degree 4. There is not even any algorithm
known for deciding whether a given curve of degree 3 or 4 has finitely many
or infinitely many rational points.

Such algorithms seem out of reach. Bhargava took a different tack and
asked, what can be said about the rational points on a typical curve? In joint
work with Arul Shankar and also with Christopher Skinner, Bhargava came
to the surprising conclusion that a positive proportion of elliptic curves have
only one rational point and a positive proportion have infinitely many. Anal-
ogously, in the case of hyperelliptic curves of degree 4, Bhargava showed that
a positive proportion of such curves have no rational points and a positive
proportion have infinitely many rational points. These works necessitated
counting lattice points in unbounded regions of high-dimensional space, in
which the regions spiral outward in complicated “tentacles”. This counting
could not have been done without Bhargava’s expansion of the geometry of
numbers technique.

Bhargava also used his expansion of the geometry of numbers to look at
the more general case of higher degree hyperelliptic curves. As noted above,
Faltings’ theorem tells us that for curves of degree 5 or higher, the number
of rational points is finite, but the theorem does not give any way of finding
the rational points or saying exactly how many there are. Once again,
Bhargava examined the question of what happens for a “typical” curve.
When the degree is even, he found that the typical hyperelliptic curve has no
rational points at all. Joint work with Benedict Gross, together with follow-
up work of Bjorn Poonen and Michael Stoll, established the same result for
the case of odd degree. These works also offer quite precise estimates of how
quickly the number of curves having rational points decreases as the degree
increases. For example, Bhargava’s work shows that, for a typical degree
10 polynomial, there is a greater than 99% chance that the curve has no
rational points.

A final example of Bhargava’s achievements is his work with Jonathan
Hanke on the so-called “290-Theorem”. This theorem concerns a question
that goes back to the time of Pierre de Fermat (1601-1665), namely, which
quadratic forms represent all integers? For example, not all integers are
the sum of two squares, so x2 + y2 does not represent all integers. Neither
does the sum of three squares, x2 + y2 + z2. But, as Joseph-Louis Lagrange
(1736-1813) famously established, the sum of four squares, x2+y2+z2+w2,
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does represent all integers. In 1916, Srinivasa Ramanujan (1887-1920) gave
54 more examples of such forms in 4 variables that represent all integers.
What other such “universal” forms could be out there? In the early 1990s,
John H. Conway and his students, particularly William Schneeberger and
Christopher Simons, looked at this question a different way, asking whether
there is a number c such that, if a quadratic form represents integers less
than c, it represents all integers. Through extensive computations, they
conjectured that c could perhaps be taken as small as 290. They made
remarkable progress, but it was not until Bhargava and Hanke took up the
question that it was fully resolved. They found a set of 29 integers, up to and
including 290, such that, if a quadratic form (in any number of variables)
represents these 29 integers, then it represents all integers. The proof is a
feat of ingenuity combined with extensive computer programming.

In addition to being one of the world’s leading mathematicians, Bhargava
is an accomplished musician; he plays the Indian instrument known as the
tabla at a professional level. An outstanding communicator, he has won
several teaching awards, and his lucid and elegant writing has garnered a
prize for exposition.

Bhargava has a keen intuition that leads him unerringly to deep and
beautiful mathematical questions. With his immense insight and great tech-
nical mastery, he seems to bring a “Midas touch” to everything he works
on. He surely will bring more delights and surprises to mathematics in the
years to come.
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